Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 060303    DOI: 10.1088/1674-1056/23/6/060303
GENERAL Prev   Next  

Entanglement and non-Markovianity of a spin-S system in a dephasing environment

Fan Zi-Long (范子龙), Tian Jing (田晶), Zeng Hao-Sheng (曾浩生)
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081, China
Abstract  We study the entanglement (measured by negativity) evolution and the non-Markovianity for the dynamical process of a spin-S system embedded in dephasing environments. The exact analytical solution is presented, which shows that the decoherence function governs the evolutions of coherence, entanglement, and the non-Markovianity of the corresponding dynamical processes. For Ohmic and sub-Ohmic reservoirs, the negativity decreases monotonically in time and the corresponding dynamics is Markovian. While for super-Ohmic reservoirs with non-monotonic decoherence function, the negativity appears as the phenomenon of revival and the corresponding dynamics is non-Markovian. The relation between non-Markovianity and the system dimension is studied.
Keywords:  entanglement      non-Markovianity      spin-S system      dephasing  
Received:  09 August 2013      Revised:  13 December 2013      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11275064 and 11075050), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20124306110003), the Program for Changjiang Scholars and Innovative Research Team in Universities of China (Grant No. IRT0964), and the Construct Program of the National Key Discipline.
Corresponding Authors:  Zeng Hao-Sheng     E-mail:  hszeng@hunnu.edu.cn

Cite this article: 

Fan Zi-Long (范子龙), Tian Jing (田晶), Zeng Hao-Sheng (曾浩生) Entanglement and non-Markovianity of a spin-S system in a dephasing environment 2014 Chin. Phys. B 23 060303

[1] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[2] Liu B H, Li L, Huang Y F, Li C F, Guo G C, Laine E M, Breuer H P and Piilo J 2011 Nat. Phys. 7 931
[3] Tang J S, Li C F, Li Y L, Zou X B, Guo G C, Breuer H P, Laine E M and Piilo J 2012 Europhys. Lett. 97 10002
[4] Ji Y H and Hu J J 2010 Chin. Phys. B 19 060304
[5] Hoeppe U, Wolff C, Küchenmeister J, Niegemann J, Drescher M, Benner H and Busch K 2012 Phys. Rev. Lett. 108 043603
[6] Shao J 2004 J. Chem. Phys. 120 5053
[7] Pomyalov A and Tannor D J 2005 J. Chem. Phys. 123 204111
[8] Chin A W, Datta A, Caruso F, Huelga S F and Plenio M B 2010 New J. Phys. 12 065002
[9] Guérin T, Bénichou O and Voituriez R 2012 Nat. Chem. 4 568
[10] Bellomo B, Lo Franco R, Maniscalco S and Compagno G 2008 Phys. Rev. A 78 060302
[11] Zhang Y J, Yang X Q, Han W and Xia Y J 2013 Chin. Phys. B 22 090307
[12] Wang X Y, Ding B F and Zhao H P 2013 Chin. Phys. B 22 020309
[13] Wang X Y, Ding B F and Zhao H P 2013 Chin. Phys. B 22 040308
[14] Zeng H S, Zheng Y P, Tang N and Wang G Y 2013 Quantum Inf. Process. 12 1637
[15] Wang Z, Guo Y and Zhou D L 2012 arXiv: 1207.2036
[16] Chin A W, Huelga S F and Plenio M B 2012 Phys. Rev. Lett. 109 233601
[17] Xiang G Y and Guo G C 2013 Chin. Phys. B 22 110601
[18] Vasile R, Olivares S, Paris M G A and Maniscalco S 2011 Phys. Rev. A 83 042321
[19] Laine E M, Breuer H P and Piilo J 2012 arXiv: 1210.8266
[20] Tang N, Xu T T and Zeng H S 2013 Chin. Phys. B 22 030304
[21] Zou H M, Fang M F and Yang B Y 2013 Chin. Phys. B 22 120303
[22] Tang N, Fan Z L and Zeng H S 2013 arXiv: 1306.0676
[23] Bylicka B, Chruściński D and Maniscalco S 2013 arXiv: 1301.2585
[24] Li Y L and Fang M F 2011 Chin. Phys. B 20 100312
[25] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
[26] Usha Devi A R, Rajagopal A K and Sudha 2011 Phys. Rev. A 83 022109
[27] Rivas A, Huelga S F and Plenio M B 2010 Phys. Rev. Lett. 105 050403
[28] Luo S, Fu S and Song H 2012 Phys. Rev. A 86 044101
[29] Wolf M M, Eisert J, Cubitt T S and Cirac J I 2008 Phys. Rev. Lett. 101 150402
[30] Chruściński D, Kossakowski A and Rivas Á 2011 Phys. Rev. A 83 052128
[31] Haikka P, Cresser J D and Maniscalco S 2011 Phys. Rev. A 83 012112
[32] Zeng H S, Tang N, Zheng Y P and Xu T T 2012 Eur. Phys. J. D 66 255
[33] Peres A 1996 Phys. Rev. Lett. 77 1413
[34] Horodečki P 1997 Phys. Lett. A 232 333
[35] Yang J, Wang Y, Wang Z, Rong X, Duan C K, Su J H and Du J 2012 Phys. Rev. Lett. 108 230501
[36] Thomale R, Rachel S, Schmitteckert P and Greiter M 2012 Phys. Rev. B 85 195149
[37] Schlottmann P and Zvyagin A A 2012 Phys. Rev. B 85 205129
[38] Bruß D and Macchiavello C 2002 Phys. Rev. Lett. 88 127901
[39] Cerf N J, Bourennane M, Karlsson A and Gisin N 2002 Phys. Rev. Lett. 88 127902
[40] Knill E 2004 quant-ph/0402171
[41] Walls D F and Milburn G J 1985 Phys. Rev. A 31 2403
[42] Haikka P, McEndoo S, De Chiara D, Palma G M and Maniscalco S 2011 Phys. Rev. A 84 031602
[43] Haikka P, Johnson T H and Maniscalco S 2013 Phys. Rev. A 87 010103
[44] Bellomo B, Lo Franco R and Compagno G 2007 Phys. Rev. Lett. 99 160502
[45] Werner R F 1989 Phys. Rev. A 40 4277
[46] Zeng H S, Tang N, Zheng Y P and Wang G Y 2011 Phys. Rev. A 84 032118
[47] Fanchini F F, Karpat G, Castelano L K and Rossatto D Z 2013 Phys. Rev. A 88 012105
[48] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[3] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[4] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[5] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[6] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[7] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[8] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[9] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[10] Quantum speed limit of the double quantum dot in pure dephasing environment under measurement
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康). Chin. Phys. B, 2022, 31(7): 070307.
[11] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[12] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[13] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[14] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[15] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
No Suggested Reading articles found!