Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 057302    DOI: 10.1088/1674-1056/23/5/057302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Phonon-dependent transport through a serially coupled double quantum dot system

M. Bagheri Tagani, H. Rahimpour Soleimani
Department of Physics, University of Guilan, P. O. Box 41335-1914, Rasht, Iran
Abstract  Using Keldysh nonequilibrium Green function formalism and mapping a many-body electron-phonon interaction onto a one body problem, the electron transport through a serially coupled double quantum dot system is analyzed. The influence of the electron-phonon interaction, temperature, detuning, and interdot tunneling on the transmission coefficient and current is studied. Our results show that the electron-phonon interaction results in the appearance of the side peaks in the transmission coefficient, whose height is strongly dependent on the phonon temperature. We have also found that the inequality of the electron-phonon interaction strength in two dots gives rise to an asymmetry in the current-voltage characteristic. In addition, the temperature difference between the phonon and electron subsystems results in the reduction of the saturated current and the destruction of the step-like behavior of the current. It is also observed that the detuning can improve the magnitude of the current by compensating the mismatch of the quantum dots energy levels induced by the electron-phonon interaction.
Keywords:  quantum dot      electron-phonon interaction      Keldysh nonequilibrium Green function formalism      current-voltage characteristic  
Received:  14 October 2013      Revised:  28 November 2013      Accepted manuscript online: 
PACS:  73.23.Hk (Coulomb blockade; single-electron tunneling)  
  73.63.Kv (Quantum dots)  
Corresponding Authors:  H. Rahimpour Soleimani     E-mail:  rahimpour@guilan.ac.ir
About author:  73.23.Hk; 73.63.Kv

Cite this article: 

M. Bagheri Tagani, H. Rahimpour Soleimani Phonon-dependent transport through a serially coupled double quantum dot system 2014 Chin. Phys. B 23 057302

[1] Van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2003 Rev. Mod. Phys. 75 1
[2] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217
[3] Ono K, Austing D G, Tokura Y and Tarucha S 2002 Science 297 1313
[4] LeRoy B J, Lemay S G, Kong J and Dekker C 2004 Nature 432 371
[5] Moldoveanu V, Gudmundsson V and Manolescu A 2007 Phys. Rev. B 76 085330
[6] Kießlich G, Schöll E, Brandes T, Hohls F and Haug R J 2007 Phys. Rev. Lett. 99 206602
[7] Molitor F, Dröscher S, Güttinger J, Jacobsen A, Stampfer C, Ihn T and Ensslin K 2009 Appl. Phys. Lett. 94 222107
[8] Hüttel A K, Witkamp B, Leijnse M, Wegewijs M R and van der Zant H S J 2009 Phys. Rev. Lett. 102 225501
[9] Sánchez R, López R, Sśnchez D and Büttiker M 2010 Phys. Rev. Lett. 104 076801
[10] Weymann I and Barnaś 2010 Phys. Rev. B 82 165450
[11] Koh T S, Simmons C B, Eriksson M A, Coppersmith S N and Friesen M 2011 Phys. Rev. Lett. 106 186801
[12] Gawarecki K and Machnikowski P 2012 Phys. Rev. B 85 041305(R)
[13] Fang Z H, Zhang X G, Chen K J, Qian X Y, Xu J, Huang X F end He F 2010 Chin. Phys. Lett. 27 057304
[14] Chen J F, Wu S Q, Hou T and Zhao G P 2010 Chin. Phys. Lett. 27 047201
[15] Chen B J, Chen X W, Shi Z G and Song K H 2009 Acta Phys. Sin. 58 2720 (in Chinese)
[16] Xu J, Shangguan W Z and Zhan S C 2005 Chin. Phys. 14 2093
[17] Johnson A C, Petta J R and Marcus C M 2005 Phys. Rev. B 72 165308
[18] Liu H W, Fujisawa T, Hayashi T and Hirayama Y 2005 Phys. Rev. B 72 161305
[19] I.narrea J, Platero G and MacDonald A H 2007 Phys. Rev. B 76 085329
[20] Yian W X, Zhang Y P, Wen Y B, Li X P, Xu L P and Gong J P 2010 Chin. Phys. B 19 027302
[21] Sasaki S, Tamura H, Akazaki T and Fujisawa T 2009 Phys. Rev. Lett. 103 266806
[22] Ferreira I L, Orellana P A, Martins G B, Souza F M and Vernek E 2011 Phys. Rev. B 84 205320
[23] Žitko R, Lim J S, López R, Martinek J and Simon P 2012 Phys. Rev. Lett. 108 166605
[24] Lü R and Liu Z R 2007 Chin. Phys. Lett. 24 195
[25] Moldoveanu V and Tanatar B 2010 Phys. Rev. B 82 205312
[26] Lara G A, Orellana P A and Anda E V 2008 Phys. Rev. B 78 045323
[27] Trocha P, Weymann I and Barnaś J 2009 Phys. Rev. B 80 165333
[28] Awschalom D D, Loss D and Samarth N 2002 Semiconductor Spintronics and Quantum Computation (Berlin: Springer)
[29] Park H, Park J, Lim A K L, Anderson E H, Alivisatos A P and McEuen P L 2000 Nature 407 57
[30] Mitra A, Aleiner I and Millis A J 2004 Phys. Rev. B 69 245302
[31] Dong B, Cui H L and Lei X L 2004 Phys. Rev. B 69 205315
[32] Zazunov A, Feinberg D and Martin T 2006 Phys. Rev. B 73 115405
[33] Siddiqui L, Ghosh A W and Datta S 2007 Phys. Rev. B 76 085433
[34] La Magna A and Deretzis I 2007 Phys. Rev. Lett. 99 136404
[35] Galperin M, Ratner M A and Nitzan A 2007 J. Phys.: Condens. Matter 19 103201
[36] Ueda A and Eto M 2007 New J. Phys. 9 119
[37] Galperin M, Nitzan A and Ratner M A 2008 Phys. Rev. B 78 125320
[38] Weber C, Fuhrer A, Fasth C, Lindwall G, Samuelson L and Wacker A 2010 Phys. Rev. Lett. 104 036801
[39] Vidmar L, Bonča J, Mierzejewski M, Prelovšek P and Trugman S A 2011 Phys. Rev. B 83 134301
[40] Kim Y, Song H, Strig F, Pernau H F, Lee T and Scheer E 2011 Phys. Rev. Lett. 106 196804
[41] Tagani M B and Soleimani H R 2011 Physica B 406 4056
[42] Tagani M B and Soleimani H R 2012 Phys. Scr. 86 035706
[43] Dong B, Cui H L, Lei X L and Horing N J M 2005 Phy. Rev. B 71 045331
[44] Qin H, Holleitner A W, Eberl K and Blick R H 2001 Phys. Rev. B 64 241302
[45] Lundin U and McKenzie R H 2002 Phys. Rev. B 66 075303
[46] Chen Z Z, Lü R and Zhu B F 2005 Phys. Rev. B 71 165324
[47] Bonča J and Trugman S A 1995 Phys. Rev. Lett. 75 2566
[48] Leturcq R, Stampfer C, Inderbitzin K, Durrer L, Hierold C, Mariant E, Schultz M G, von Oppen F and Ensslin K 2009 Nat. Phys. 5 327
[49] Fang T F, Sun Q F and Luo H G 2011 Phys. Rev. B 84 155417
[50] Huag H and Jauho A P 1996 Quantum Kinetics in Transport and Optics of Semiconductors (Berlin: Springer)
[51] Langreth D C 1976 in Linear and Nonlinear Electron Transport in Solids, (Vol. 17) NATO Advanced Study Institute Series B: Physics (Ed. by Devreese J T and Van Doren V E) (New York: Plenum)
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[7] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[8] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[9] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[10] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[11] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
[14] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[15] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
No Suggested Reading articles found!