CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effect of additional silicon on titanium/4H-SiC contacts properties |
Zhang Yong-Ping (张永平), Chen Zhi-Zhan (陈之战), Lu Wu-Yue (卢吴越), Tan Jia-Hui (谈嘉慧), Cheng Yue (程越), Shi Wang-Zhou (石旺舟) |
Shanghai Normal University, Shanghai 200234, China |
|
|
Abstract The Ti electrode was deposited on the (0001 ) face of an n-type 4H-SiC substrate by magnetron sputtering. The effect of the electrode placement method during the annealing treatment on the contact property was carefully investigated. When the electrode was faced to the Si tray and annealed, it showed ohmic behavior, otherwise it showed a non-ohmic property. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to characterize the electrode phase, composition, thickness, and surface morphology. The additional silicon introduced from the Si tray played a key role in the formation of the ohmic contact on the Ti/4H-SiC contact.
|
Received: 09 October 2013
Revised: 23 December 2013
Accepted manuscript online:
|
PACS:
|
73.40.Cg
|
(Contact resistance, contact potential)
|
|
68.55.-a
|
(Thin film structure and morphology)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB326402), the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 13ZZ108), and the Shanghai Science and Technology Commission, China (Grant No. 13520502700). |
Corresponding Authors:
Chen Zhi-Zhan
E-mail: chenwbgs@126.com
|
About author: 73.40.Cg; 68.55.-a |
Cite this article:
Zhang Yong-Ping (张永平), Chen Zhi-Zhan (陈之战), Lu Wu-Yue (卢吴越), Tan Jia-Hui (谈嘉慧), Cheng Yue (程越), Shi Wang-Zhou (石旺舟) Effect of additional silicon on titanium/4H-SiC contacts properties 2014 Chin. Phys. B 23 057303
|
[1] |
Vix-Guterl C, Alix I, Gibot P and Ehrburger P 2003 Appl. Surf. Sci. 329 1639
|
[2] |
Katsuno T, Watanabe Y, Fujiwara H, Konishi M, Naruoka H, Morimoto J, Morino T and Endo T 2011 Appl. Phys. Lett. 98 222111
|
[3] |
Morkoc H, Strite S, Gao G B, Lin M E, Sverdlov B and Burns M 1994 J. Appl. Phys. 76 1363
|
[4] |
Guo H, Zhang Y M, Qiao D Y, Sun L and Zhang Y M 2007 Chin. Phys. 16 1753
|
[5] |
Yang H, Peng T H, Wang W J, Zhang D F and Chen X L 2007 Appl. Surf. Sci. 254 527
|
[6] |
Yang H, Peng T H, Wang W J, Wang W Y and Chen X L 2008 Appl. Surf. Sci. 255 3121
|
[7] |
Goesmann F and Schmid-Fetzer R 1995 Semicond. Technol. 10 1652
|
[8] |
Goesmann F and Schmid-Fetzer R 1997 Mater. Sci. Eng. B 46 357
|
[9] |
Guo H, Zhang Y M and Zhang Y M 2006 Chin. Phys. 15 2142
|
[10] |
Xu M S, Hua X B, Peng Y, Yang K, Xia W, Yu G J and Xu X G 2013 J. Alloys Compd. 550 46
|
[11] |
Buchholt K, Ghandi R, Domeij M, Zetterling C M, Lu J, Eklund P, Hultman L and Spetz A L 2011 Appl. Phys. Lett. 98 042108
|
[12] |
Wang Z, Tsukimoto S, Saito M, Ito K, Murakami M and Ikuhara Y 2009 Phys. Rev. B 80 245303
|
[13] |
Drevin-Bazin A, Barbot J F, Alkazaz M, Cabioch T and Beaufort M F 2012 Appl. Phys. Lett. 101 021606
|
[14] |
Stoltz S E, Starnberg H I and Barsoum M W 2003 J. Phys. Chem. Solids. 64 2321
|
[15] |
Mohney S E, Hull B A, Lin J Y and Crofton J 2002 Solid State Electron. 46 689
|
[16] |
Via F L, Roccaforte F, Makhtari A, Raineri V, Musumeci P and Calcagno L 2002 Microelectronic Engineering 60 269
|
[17] |
Reeves G K and Harrison H B 1982 IEEE Electron Device 3 111
|
[18] |
Lee S H, Park H and Paine D C 2011 J. Appl. Phys. 109 063702
|
[19] |
Tsukimoto S, Nitta K, Sakai T, Moriyama M and Murakami M 2004 J. Electron Mater. 33 460
|
[20] |
Frazzetto A, Giannazzo F, Nigro R L, Raineri V and Roccaforte F 2011 J. Phys. D: Appl. Phys. 44 255302
|
[21] |
Alami J, Eklund P, Emmerlich J, Wilhelmsson O, Jansson U, Högberg H, Hultman L and Helmersson U 2006 Thin Solid Films 515 1731
|
[22] |
Johansson L I and Virojanadara C 2011 Phys. Status Solidi B 3 667
|
[23] |
Waldrop J R and Grant R W 1993 Appl. Phys. Lett. 62 2685
|
[24] |
Kooi B J, Kabel M, Kloosterman A B and Hosson J T M D 1999 Acta Mater. 47 3105
|
[25] |
Tong Q Y, Gutjahr K, Hopfe S, GOsele U and Lee T H 1997 Appl. Phys. Lett. 70 1390
|
[26] |
Kim D W and Baik H K 2000 Appl. Phys. Lett. 77 1011
|
[27] |
Michaelson H B 1997 J. Appl. Phys. 48 4729
|
[28] |
Luo B, Ren F, Fitch R C, Gillespie J K, Jenkins T, Sewell J, Via D, Crespo A, Baca A G, Briggs R D, Gotthold D, Birkhahn R, Peres B and Pearton S J 2003 Appl. Phys. Lett. 82 3910
|
[29] |
Radhakrishnan G, Adams P M and Speckman D M 2000 Thin Solid Films 358 131
|
[30] |
Lan Y L, Lin H C, Liu H H, Lee G Y, Ren F, Pearton S J, Chang M N and Chyi J I 2009 Appl. Phys. Lett. 94 243502
|
[31] |
Aboelfotoh M O and Tu K N 1986 Phys. Rev. B 34 2311
|
[32] |
Teraji T, Hara S, Okushi H and Kajimura K 1997 Appl. Phys. Lett. 71 689
|
[33] |
Pécz B, Tóth L, di Forte-Poisson M A and Vacas J 2003 Appl. Surf. Sci. 206 8
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|