Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 057204    DOI: 10.1088/1674-1056/23/5/057204
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High performance oscillator with 2-mW output power at 300 GHz

Wu De-Qi (武德起)a, Ding Wu-Chang (丁武昌)a, Yang Shan-Shan (杨姗姗)a b, Jia Rui (贾锐)a, Jin Zhi (金智)a, Liu Xin-Yu (刘新宇)a
a Institute of Microelectrics, Chinese Academy of Sciences, Beijing 100029, China;
b School of Physics and Electrical Information Science, Ningxia University, Yinchuan 750021, China
Abstract  Material structures and device structures of a 100-GHz InP based transferred-electron device are designed in this paper. In order to successfully fabricate the Gunn devices operating at 100 GHz, the InP substrate was entirely removed by mechanical thinning and wet etching. The Gunn device was connected to a tripler link and a high RF (radio frequency) output with power of 2 mW working at 300 GHz was obtained, which is high enough for applications in current military electronic systems.
Keywords:  InP      transferred electron devices      terahertz wave      negative differential resistance  
Received:  20 August 2013      Revised:  19 November 2013      Accepted manuscript online: 
PACS:  72.80.Ey (III-V and II-VI semiconductors)  
  73.40.Lg  
  73.61.Ey (III-V semiconductors)  
Fund: Project supported by the Main Direction Program of Knowledge Innovation of the Chinese Academy of Sciences (Grant No. 2A2011YYYJ-1123).
Corresponding Authors:  Jia Rui     E-mail:  jiarui@ime.ac.cn
About author:  72.80.Ey; 73.40.Lg; 73.61.Ey

Cite this article: 

Wu De-Qi (武德起), Ding Wu-Chang (丁武昌), Yang Shan-Shan (杨姗姗), Jia Rui (贾锐), Jin Zhi (金智), Liu Xin-Yu (刘新宇) High performance oscillator with 2-mW output power at 300 GHz 2014 Chin. Phys. B 23 057204

[1] Varani L, Palermo C, Millithaler J F, Vaissière J C, Starikov E, Shiktorov P, Gružinskis V, Mateos J, Pérez S, Pardo D and González T 2006 J. Comput. Electron. 5 71
[2] Hao Y, Yang L and Zhang J 2008 Terahertz Sci. Technol. 1 51
[3] Förster A, Stock J, Montanari S, Lepsa S M I and Lüth H 2006 Sensors 6 350
[4] Born B and Havenith M 2009 J. Infrared Milli. Terahz Waves 30 1245
[5] Montanari A, Forster A, Lepsa M I and Luth H 2005 Solid State Electron. 49 245
[6] Yilmazoglu O, Mutamba K, Pavlidis D and Karaduman T 2008 Electron. Dev. 55 563
[7] www.nrao.edu/meetings/isstt/papers/2010/2010328337.pdf
[8] Herbert E 2010 Electron. Lett. 46 422
[9] Pilgrim N J, Khalid A, Dunn G M and Cumming D R S 2008 Semicond. Sci. Technol. 23 075013
[10] Dunn G M and Kearney M J 2003 Semicond. Sci. Technol. 18 794
[11] Herstellung J S 2003 Ph. D. Dissertation (Aachen: Uniersity of Aachen RWTH)
[12] Ko D S, Lee S J, Baek T J, Choi S G, Han M, Park H C, Rhee J K, Jung J H and Park Y W 2011 Microwave Wireless Comp. Lett. 21 3
[13] Bai Y, Jia R, Wu D Q, Jin Z and Liu X Y 2013 Chin. Phys. B 22 027202
[14] Wu D, Ding W, Yang S, Jia R, Jin Z and Liu X Journal of Semiconductors (in publishing)
[15] Eisele H and Haddad G I 1998 IEEE Trans. Microwave Theory Tech. 46 739
[16] Yearsley J D, Lin J C, Hwang E, Datta S and Mohney S E 2012 J. Appl. Phys. 112 054510
[17] Baca A G, Ren F, Zolper J C, Briggs R D and Pearton S J 1997 Thin Solid Films 308-309 599
[18] Zettler R A Cowley A M and Engelmann A M 1969 Electron. Lett. 5 693
[19] Narayan S Y and Paczkowski J P 1972 RCA Rev. 33 752
[1] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[2] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[3] Enhancement of fMAX of InP-based HEMTs by double-recessed offset gate process
Bo Wang(王博), Peng Ding(丁芃), Rui-Ze Feng(封瑞泽), Shu-Rui Cao(曹书睿), Hao-Miao Wei(魏浩淼), Tong Liu(刘桐), Xiao-Yu Liu(刘晓宇), Hai-Ou Li(李海鸥), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058506.
[4] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[5] Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation
Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(4): 047303.
[6] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[7] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[8] High-sensitive terahertz detection by parametric up-conversion using nanosecond pulsed laser
Yuye Wang(王与烨), Gang Nie(聂港), Changhao Hu(胡常灏), Kai Chen(陈锴), Chao Yan(闫超), Bin Wu(吴斌), Junfeng Zhu(朱军峰), Degang Xu(徐德刚), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(2): 024204.
[9] Switchable vortex beam polarization state terahertz multi-layer metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(11): 114201.
[10] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
[11] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[12] Spin transport properties for B-doped zigzag silicene nanoribbons with different edge hydrogenations
Jing-Fen Zhao(赵敬芬), Hui Wang(王辉), Zai-Fa Yang(杨在发), Hui Gao(高慧), Hong-Xia Bu(歩红霞), and Xiao-Juan Yuan(袁晓娟). Chin. Phys. B, 2022, 31(1): 017302.
[13] A comparative study on radiation reliability of composite channel InP high electron mobility transistors
Jia-Jia Zhang(张佳佳), Peng Ding(丁芃), Ya-Nan Jin(靳雅楠), Sheng-Hao Meng(孟圣皓), Xiang-Qian Zhao(赵向前), Yan-Fei Hu(胡彦飞), Ying-Hui Zhong(钟英辉), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(7): 070702.
[14] High-efficiency terahertz wave generation with multiple frequencies by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Binzhe Jiao(焦彬哲), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Gege Zhang(张格格), Qianze Yan(颜钤泽), Pibin Bing(邴丕彬), Fengrui Zhang(张风蕊), Zhan Wang(王湛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(4): 044211.
[15] Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(2): 024209.
No Suggested Reading articles found!