Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 057203    DOI: 10.1088/1674-1056/23/5/057203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Experimental and numerical analyses of high voltage 4H-SiC junction barrier Schottky rectifiers with linearly graded field limiting ring

Wang Xiang-Dong (王向东)a, Deng Xiao-Chuan (邓小川)a, Wang Yong-Wei (王永维)b, Wang Yong (王勇)b, Wen Yi (文译)a, Zhang Bo (张波)a
a State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China;
b National Key Laboratory of ASIC, Shijiazhuang 050051, China
Abstract  This paper describes the successful fabrication of 4H-SiC junction barrier Schottky (JBS) rectifiers with a linearly graded field limiting ring (LG-FLR). Linearly variable ring spacings for the FLR termination are applied to improve the blocking voltage by reducing the peak surface electric field at the edge termination region, which acts like a variable lateral doping profile resulting in a gradual field distribution. The experimental results demonstrate a breakdown voltage of 5 kV at the reverse leakage current density of 2 mA/cm2 (about 80% of the theoretical value). Detailed numerical simulations show that the proposed termination structure provides a uniform electric field profile compared to the conventional FLR termination, which is responsible for 45% improvement in the reverse blocking voltage despite a 3.7% longer total termination length.
Keywords:  4H-SiC      junction barrier Schottky rectifier      linearly graded field limiting ring      breakdown voltage  
Received:  29 July 2013      Revised:  20 November 2013      Accepted manuscript online: 
PACS:  72.20.Ht (High-field and nonlinear effects)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  85.30.Mn (Junction breakdown and tunneling devices (including resonance tunneling devices))  
Fund: Project supported by the State Key Program of the National Natural Science Foundation of China (Grant No. 61234006).
Corresponding Authors:  Deng Xiao-Chuan     E-mail:  xcdeng@uestc.edu.cn
About author:  72.20.Ht; 73.30.+y; 85.30.Mn

Cite this article: 

Wang Xiang-Dong (王向东), Deng Xiao-Chuan (邓小川), Wang Yong-Wei (王永维), Wang Yong (王勇), Wen Yi (文译), Zhang Bo (张波) Experimental and numerical analyses of high voltage 4H-SiC junction barrier Schottky rectifiers with linearly graded field limiting ring 2014 Chin. Phys. B 23 057203

[1] Ning P Q, Zhang D, Lai R X, Jiang D, Wang F, Boroyevich D, Burgos R, Karimi K, Immanuel V D and Solodovnik E V 2013 IEEE Industrial Electronics Magazine 7 6
[2] Qin H H, Zhao B, Nie X, Wen J P and Yan Y G 2013 8th IEEE Conference on Industrial Electronics and Applications p. 466
[3] Duong T H, Hefner A R and Hobart K D 2012 IEEE Energy Conversion Congress and Exposition p. 4274
[4] Singh R and Sundaresan S 2013 28h Annual IEEE Applied Power Electronics Conference and Exposition p. 226
[5] Lentijo K and Hobart K 2013 IEEE Electric Ship Technologies Symposium p. 162
[6] Chen F P, Zhang Y M, Zhang Y M, Lü H L and Song Q W 2010 Chin. Phys. B 19 047305
[7] Zhang F S and Li X R 2011 Chin. Phys. B 20 067102
[8] Bolotnikov A V, Muzykov P G, Zhang Q C, Agarwal A K and Sudarshan T S 2010 IEEE Trans. Electron. Dev. 57 1930
[9] Sung W, Brunt E V, Baliga B J and Huang A Q 2011 IEEE Electron Dev. Lett. 32 880
[10] Feng G, Suda J and Kimoto T 2012 IEEE Trans. Electron. Dev. 59 414
[11] Sheridan D C, Niu G, Merrett J N, Cressler J D, Ellis C and Tin C 2000 Solid-State Electron. 44 1367
[12] Http://www.silvaco.com/products/device_simulation/atlas.html [2013-7-20]
[13] Caughey D M and Thomas R E 1967 Proc. IEEE 55 2192
[14] Yoder M N 1996 IEEE Trans. Electron. Dev. 43 1633
[15] Hall R N 1952 Phys. Rev. 87 387
[16] Shockley W and Read W T 1952 Phys. Rev. 87 835
[17] Overstraeten V R and De M H 1970 Solid-State Electron. 13 583
[18] Raghunathan R and Baliga B J 1999 Solid-State Electron. 43 199
[19] Zhao J H, Gruzinskis V, Luo Y, Weiner M, Pan M, Shiktorov P and Starikov E 2000 Semicond. Sci. Technol. 15 1093
[1] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[2] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[3] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[4] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[5] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[6] Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yixiao Qian(钱怡潇), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(4): 046104.
[7] A 4H-SiC merged P-I-N Schottky with floating back-to-back diode
Wei-Zhong Chen(陈伟中), Hai-Feng Qin(秦海峰), Feng Xu(许峰), Li-Xiang Wang(王礼祥), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(2): 028503.
[8] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[9] Enhanced single photon emission in silicon carbide with Bull's eye cavities
Xing-Hua Liu(刘兴华), Fang-Fang Ren(任芳芳), Jiandong Ye(叶建东), Shuxiao Wang(王书晓), Wei-Zong Xu(徐尉宗), Dong Zhou(周东), Mingbin Yu(余明斌), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2022, 31(10): 104206.
[10] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[11] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[12] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[13] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[14] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[15] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
No Suggested Reading articles found!