CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Detection of Majorana fermions in an Aharonov-Bohm interferometer |
Shang En-Ming (尚恩明), Pan Yi-Ming (潘义明), Shao Lu-Bing (邵陆兵), Wang Bai-Gen (王伯根) |
National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China |
|
|
Abstract By using the non-equilibrium Green's function technique, we investigate the electronic transport properties in an Aharonov-Bohm interferometer coupling with Majorana fermions. We find a fixed unit conductance peak which is independent of the other factors when the topological superconductor is grounded. Especially, an additional phase appears when the topological superconductor is in the strong Coulomb regime, which induces a new conductance resonant peak compared with the structure of replacing the topological superconductor by a quantum dot, and the conductance oscillation with the magnetic flux reveals a 2π phase shift by raising (lowering) a charge on the capacitor.
|
Received: 17 August 2013
Revised: 21 October 2013
Accepted manuscript online:
|
PACS:
|
72.10.Fk
|
(Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB922103). |
Corresponding Authors:
Shang En-Ming
E-mail: shangjin0491@163.com
|
About author: 72.10.Fk; 73.63.-b; 85.75.-d |
Cite this article:
Shang En-Ming (尚恩明), Pan Yi-Ming (潘义明), Shao Lu-Bing (邵陆兵), Wang Bai-Gen (王伯根) Detection of Majorana fermions in an Aharonov-Bohm interferometer 2014 Chin. Phys. B 23 057201
|
[1] |
Kitaev A Y 2001 Physics Uspekhi 44 131
|
[2] |
Fu L and C L Kane 2008 Phys. Rev. Lett. 100 096407
|
[3] |
Tanaka Y, Yokoyama T and Nagaosa N 2009 Phy. Rev. Lett. 103 107002
|
[4] |
Beenakker C W J 2013 Annu. Rev. Condens. Matter Phys. 4 113
|
[5] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[6] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[7] |
Kitaev A Y 2003 Ann. Phys. 303 2
|
[8] |
Read N and Green D 2000 Phys. Rev. B 61 10267
|
[9] |
Bolech C J and Demler E 2007 Phys. Rev. Lett. 98 237002
|
[10] |
Tewari S, Zhang C, Das Sarma S, Nayak C and Lee D H 2008 Phys. Rev. Lett. 100 027001
|
[11] |
Moore G and Read N 1991 Nucl. Phys. B 360 362
|
[12] |
Nilsson J, Akhmerov A R and Beenakker C W J 2008 Phys. Rev. Lett. 101 120403
|
[13] |
Fu L and Kane C L 2009 Phys. Rev. Lett. 102 216403
|
[14] |
Li X G, Zhang G F, Wu G F, Chen H, Dimitrie C and Zhang Z Y 2013 Chin. Phys. B 22 097306
|
[15] |
Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502
|
[16] |
Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
|
[17] |
Alicea J 2010 Phys. Rev. B 81 125318
|
[18] |
Ivanov D A 2001 Phys. Rev. Lett. 86 268
|
[19] |
He K, Ma X C, Chen X, Lü L, Wang Y Y and Xue Q K 2013 Chin. Phys. B 22 067305
|
[20] |
Yuan J H, Cheng Z, Zhang J J, Zeng Q J and Zhang J P 2012 Chin. Phys. B 21 047203
|
[21] |
Liu Y, Ma Z, Zhao Y F, Meenakshi S and Wang J 2013 Chin. Phys. B 22 067302
|
[22] |
Flensberg K 2010 Phys. Rev. B 82 180516
|
[23] |
Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
|
[24] |
Rokhinson L P, Liu X Y and Furdyna J K 2012 Nat. Phys. 8 795
|
[25] |
Das A, Ronen Y, Most Y, Oreg Y, Herblum M and Shtrikman H 2012 Nat. Phys. 8 887
|
[26] |
Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414
|
[27] |
Liu J, Potter A C, Law K T and Lee P A 2012 Phys. Rev. Lett. 109 267002
|
[28] |
Fu L 2010 Phys. Rev. Lett. 104 056402
|
[29] |
Zazunov A, Yeyati A L and Egger R 2011 Phys. Rev. B 84 165440
|
[30] |
Hützen R, Zazunov A, Braunecker B, Yeyati A L and Egger R 2012 Phys. Rev. Lett. 109 166403
|
[31] |
Liu D E and Baranger H U 2011 Phys. Rev. B 84 201308
|
[32] |
Datta S 1995 Electronic Transport in Mesoscopic Systems (1st edn.) (London: Cambridge University Press)
|
[33] |
Meir Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512
|
[34] |
Lü H F, Lu H Z and Shen S Q 2012 Phys. Rev. B 86 075318
|
[35] |
Cao Y, Wang P, Xiong G, Gong M and Li X 2012 Phys. Rev. B 86 115311
|
[36] |
Zhu B F, Lu H and Lü R 2005 Phys. Rev. B 71 235320
|
[37] |
Fano U 1961 Phys. Rev. 124 1866
|
[38] |
Kobayashi K, Aikawa H, and Katsumoto S and Iye Y 2002 Phys. Rev. Lett. 88 256806
|
[39] |
Göres J, Goldhaber-Gordon D, Granger G, Kastner M A, Shtrikman H, Mahalu D and Meirav U 2000 Phys. Rev. B 62 2188
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|