Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 057201    DOI: 10.1088/1674-1056/23/5/057201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Detection of Majorana fermions in an Aharonov-Bohm interferometer

Shang En-Ming (尚恩明), Pan Yi-Ming (潘义明), Shao Lu-Bing (邵陆兵), Wang Bai-Gen (王伯根)
National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
Abstract  By using the non-equilibrium Green's function technique, we investigate the electronic transport properties in an Aharonov-Bohm interferometer coupling with Majorana fermions. We find a fixed unit conductance peak which is independent of the other factors when the topological superconductor is grounded. Especially, an additional phase appears when the topological superconductor is in the strong Coulomb regime, which induces a new conductance resonant peak compared with the structure of replacing the topological superconductor by a quantum dot, and the conductance oscillation with the magnetic flux reveals a 2π phase shift by raising (lowering) a charge on the capacitor.
Keywords:  Majorana fermion      quantum dot      Aharonov-Bohm interferometer      Coulomb blockade  
Received:  17 August 2013      Revised:  21 October 2013      Accepted manuscript online: 
PACS:  72.10.Fk (Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB922103).
Corresponding Authors:  Shang En-Ming     E-mail:  shangjin0491@163.com
About author:  72.10.Fk; 73.63.-b; 85.75.-d

Cite this article: 

Shang En-Ming (尚恩明), Pan Yi-Ming (潘义明), Shao Lu-Bing (邵陆兵), Wang Bai-Gen (王伯根) Detection of Majorana fermions in an Aharonov-Bohm interferometer 2014 Chin. Phys. B 23 057201

[1] Kitaev A Y 2001 Physics Uspekhi 44 131
[2] Fu L and C L Kane 2008 Phys. Rev. Lett. 100 096407
[3] Tanaka Y, Yokoyama T and Nagaosa N 2009 Phy. Rev. Lett. 103 107002
[4] Beenakker C W J 2013 Annu. Rev. Condens. Matter Phys. 4 113
[5] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[6] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[7] Kitaev A Y 2003 Ann. Phys. 303 2
[8] Read N and Green D 2000 Phys. Rev. B 61 10267
[9] Bolech C J and Demler E 2007 Phys. Rev. Lett. 98 237002
[10] Tewari S, Zhang C, Das Sarma S, Nayak C and Lee D H 2008 Phys. Rev. Lett. 100 027001
[11] Moore G and Read N 1991 Nucl. Phys. B 360 362
[12] Nilsson J, Akhmerov A R and Beenakker C W J 2008 Phys. Rev. Lett. 101 120403
[13] Fu L and Kane C L 2009 Phys. Rev. Lett. 102 216403
[14] Li X G, Zhang G F, Wu G F, Chen H, Dimitrie C and Zhang Z Y 2013 Chin. Phys. B 22 097306
[15] Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502
[16] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[17] Alicea J 2010 Phys. Rev. B 81 125318
[18] Ivanov D A 2001 Phys. Rev. Lett. 86 268
[19] He K, Ma X C, Chen X, Lü L, Wang Y Y and Xue Q K 2013 Chin. Phys. B 22 067305
[20] Yuan J H, Cheng Z, Zhang J J, Zeng Q J and Zhang J P 2012 Chin. Phys. B 21 047203
[21] Liu Y, Ma Z, Zhao Y F, Meenakshi S and Wang J 2013 Chin. Phys. B 22 067302
[22] Flensberg K 2010 Phys. Rev. B 82 180516
[23] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
[24] Rokhinson L P, Liu X Y and Furdyna J K 2012 Nat. Phys. 8 795
[25] Das A, Ronen Y, Most Y, Oreg Y, Herblum M and Shtrikman H 2012 Nat. Phys. 8 887
[26] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414
[27] Liu J, Potter A C, Law K T and Lee P A 2012 Phys. Rev. Lett. 109 267002
[28] Fu L 2010 Phys. Rev. Lett. 104 056402
[29] Zazunov A, Yeyati A L and Egger R 2011 Phys. Rev. B 84 165440
[30] Hützen R, Zazunov A, Braunecker B, Yeyati A L and Egger R 2012 Phys. Rev. Lett. 109 166403
[31] Liu D E and Baranger H U 2011 Phys. Rev. B 84 201308
[32] Datta S 1995 Electronic Transport in Mesoscopic Systems (1st edn.) (London: Cambridge University Press)
[33] Meir Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512
[34] Lü H F, Lu H Z and Shen S Q 2012 Phys. Rev. B 86 075318
[35] Cao Y, Wang P, Xiong G, Gong M and Li X 2012 Phys. Rev. B 86 115311
[36] Zhu B F, Lu H and Lü R 2005 Phys. Rev. B 71 235320
[37] Fano U 1961 Phys. Rev. 124 1866
[38] Kobayashi K, Aikawa H, and Katsumoto S and Iye Y 2002 Phys. Rev. Lett. 88 256806
[39] Göres J, Goldhaber-Gordon D, Granger G, Kastner M A, Shtrikman H, Mahalu D and Meirav U 2000 Phys. Rev. B 62 2188
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[4] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[10] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[11] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
No Suggested Reading articles found!