Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 057104    DOI: 10.1088/1674-1056/23/5/057104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic and optical properties of Au-doped Cu2O:A first principles investigation

Jiang Zhong-Qian (姜中钱)a b c, Yao Gang (姚钢)b c, An Xin-You (安辛友)b, Fu Ya-Jun (符亚军)b, Cao Lin-Hong (曹林洪)b c, Wu Wei-Dong (吴卫东)a b c, Wang Xue-Min (王雪敏)b
a College of Science, Southwest University of Science and Technology, Mianyang 621010, China;
b Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics (CAEP), Mianyang 621900, China;
c Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology and Research Center of Laser Fusion, China Academy of Engineering Physics (CAEP), Mianyang 621010, China
Abstract  The Cu2O and Au-doped Cu2O films are prepared on MgO (001) substrates by pulsed laser deposition. The X-ray photoelectron spectroscopy proves that the films are of Au-doped Cu2O. The optical absorption edge decreases by 1.6% after Au doping. The electronic and optical properties of pure and Au-doped cuprite Cu2O films are investigated by the first principles. The calculated results indicate that Cu2O is a direct band-gap semiconductor. The scissors operation of 1.64 eV has been carried out. After correcting, the band gaps for pure and Au doped Cu2O are about 2.17 eV and 2.02 eV, respectively, decreasing by 6.9%. All of the optical spectra are closely related to the dielectric function. The optical spectrum red shift corresponding to the decreasing of band gap, and the additional absorption are observed in the visible region for Au doped Cu2O film. The experimental results are generally in agreement with the calculated results. These results indicate that Au doping could become one of the important factors influencing the photovoltaic activity of Cu2O film.
Keywords:  Cu2O      electronic structure      optical properties      first-principles  
Received:  19 September 2013      Revised:  24 December 2013      Accepted manuscript online: 
PACS:  71.15.Ap (Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.))  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.22.+i (Electronic structure of liquid metals and semiconductors and their Alloys)  
  78.66.-w (Optical properties of specific thin films)  
Corresponding Authors:  Cao Lin-Hong, Wang Xue-Min     E-mail:  hyclh@yeah.net;wangxuemin75@sohu.com
About author:  2014-3-26

Cite this article: 

Jiang Zhong-Qian (姜中钱), Yao Gang (姚钢), An Xin-You (安辛友), Fu Ya-Jun (符亚军), Cao Lin-Hong (曹林洪), Wu Wei-Dong (吴卫东), Wang Xue-Min (王雪敏) Electronic and optical properties of Au-doped Cu2O:A first principles investigation 2014 Chin. Phys. B 23 057104

[1] Rakhshani A E 1986 Solid State Electronics 29 7
[2] Ghisjen J, Tjeng L H, Elp J, Eskes H, Westerink J, Sawatzky G A and Czyzyk M T 1988 Phys. Rev. B 38 11322
[3] Matsuzaki K, Ishizuka S, Yanagita M, Nawa Y, Goutam K P and Sakurai T 2006 Solar Energy 80 715
[4] Olsen L C, Addis F W and Miller W 1982 Solar Cells 7 247
[5] Mittiga A, Salza E and Sarto F 2006 Appl. Phys. Lett. 88 163502
[6] Mizuno K, Izaki M, Murase K, Shinagawa T, Chigane M, Inaba M, Tasaka A and Awakura Y 2005 J. Electr. Chem. Soc. 152 C179
[7] Ivill M, Overberg M E, Abernathy C R and Norton D P 2003 Solid-State Electronics 47 2215
[8] Kikuchi N and Tonooka K 2005 Thin Solid Films 486 33
[9] Nakano Y, Saeki S and Morikawa T 2009 Appl. Phys. Lett. 94 022111
[10] Pu C Y, Li H J and Tang X 2012 Acta Phys. Sin. 61 047104 (in Chinese)
[11] Martinez-Ruiz A, Moreno M G and Takeuchi N 2003 Solid State Science 5 291
[12] Bamwenda G R, Tsubota S, Nakamura T and Haruta M J 1995 J. Photochem. Photobio. A: Chem. 89 177
[13] Khan M M and Cho M H 2012 Bull. Korean Chem. Soc. 33 1753
[14] Subramanian V, Wolf E E and Kamat P V 2003 Langmuir 19 469
[15] Zang L, Macyk W, Lang C, Maier W F, Antonius C, Meissner D and Kisch H 2000 Chem. Eu. J. 6 379
[16] Fu Y J, Lei H W, Wang X M, Yan D W, Cao L H, Yao G, Shen C L, Peng L P, Zhao Y, Wang Y Y and Wu W D 2013 Appl. Sur. Sci. 273 19
[17] Okoye C M I 2003 J. Phys: Condens. Matter 15 5945
[18] Kirfel A and Eichhorn K D 1990 Acta Crystal. A 46 271
[19] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[20] Liu L, Wei J J, An X Y, Wang X M, Liu H N and Wu W D 2011 Chin. Phys. B 20 106201
[21] Ren D H and Cheng X L 2012 Chin. Phys. B 21 127103
[22] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[23] Vanderbilt D 1990 Phys. Rev. B 41 7892
[24] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[25] Bouhemadou A, Djabi F and Khenata R 2008 Phys. Lett. A 372 4527
[26] Restori R and Schwarzenbach D 1986 Acta Crystallogr. 42 201
[27] Mazharul M I, Boubakar D, Vincent M and Philippe M 2009 J. Mol. Struc.: THEOCHEM 903 41
[28] Li C, Wang F, Li S F and Jia Y 2010 Phys. Lett. A 374 2994
[29] Soon A, Todorova M, Delley B and Stampfl C 2007 Phys. Rev. B 75 125420
[30] Soon A, Söhnel T and Idriss H 2005 Surf. Sci. 579 131
[31] Ruiz E, Alvarez S, Alemang P and Evarestov R A 1997 Phys. Rev. B 56 7189
[32] Masaya I and Song Y 2011 Jpn J. Appl. Phys. 50 051002
[33] Wong L M, Chiam S Y, Huang J Q, Wang S J, Pan J S and Chim W K 2010 J. Appl. Phys. 108 033702
[34] Soon A, Cui X Y, Delley B, Wei S H and Stampfl C 2009 Phys. Rev. B 79 035205
[35] Raebiger H, Lany S and Zunger A 2007 Phys. Rev. B 76 045209
[36] Nolan M and Elliott S D 2006 Phys. Chem. Chem. Phys. 8 5350
[37] Zhang X D, Guo M L, Liu C L, Li W X and Hong X F 2008 Appl. Phys. Lett. 93 012103
[38] Lin Z, Orlov A, Lambert R M and Payne M C 2005 J. Phys. Chem. B 109 20948
[39] Yang K, Dai Y and Huang B 2007 J. Phys. Chem. C 111 12086
[40] Zhang X D, Guo M L, Li W X and Liu C L 2008 J. Appl. Phys. 103 063721
[41] Ghisjen J, Tjeng L H, Elp J, Eskes H, Westerink J, Sawatsky G A and Czyzyk M T 1988 Phys. Rev. B 38 11322
[42] Ghijsen J, Tjeng L H, Eskes H, Sawatsky G A and Johnson R L 1990 Phys. Rev. B 42 2268
[43] Mulliken R S 1955 J. Chem. Phys. 23 1833
[44] Segall M D, Pickard C J, Shah R and Payne M C 1996 Mol. Phys. 89 571
[45] Segall M D, Shah R, Pickard C J and Payne M C 1996 Phys. Rev. B 54 16317
[46] Ambrosch D C and Sofo J O 2006 Comput. Phys. Commun. 175 1
[47] Yao G, Chen Y, An X Y, Jiang Z Q, Cao L H, Wu W D and Zhao Y 2013 Chin. Phys. Lett. 30 067101
[48] Fox M 2001 Optical Properties of Solids (New York: Oxford University Press)
[49] Yang Z J, Guo Y D, Li J, Liu J C, Dai W, Cheng X L and Yang X D 2010 Chin. Phys. B 19 077102
[50] Srikant V and Clarke D R 1997 J. Appl. Phys. 81 6357
[51] Anderson O L 1963 J. Phys. Chem. Solids 24 909
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[6] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[11] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[12] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[13] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[14] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[15] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
No Suggested Reading articles found!