Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 050311    DOI: 10.1088/1674-1056/23/5/050311
GENERAL Prev   Next  

Spin-star environment assisted entanglement generation in weakly coupled bipartite systems

Wang Gen-Fang (王艮芳), Lü Jian-Mei (吕建美), Wang Lin-Cheng (王林成)
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
Abstract  We study the entanglement evolution in a weakly coupled bipartite system with a large energy level difference under the influence of spin-star environments. The subsystems can be coupled to a pure state or a thermal equilibrium state spin-star environment. Our results show that, in the case of the coupling strength being less than the energy level difference of the subsystems (weakly coupled), the spin-star environment can always be used to assist the entanglement generation of the bipartite system.
Keywords:  entanglement      spin-star environment      weakly coupled system  
Received:  11 August 2013      Revised:  16 October 2013      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  05.60.Gg (Quantum transport)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10905007 and 61078011) and the Fundamental Research Funds for the Central Universities, China (Grant No. DUT12LK28).
Corresponding Authors:  Wang Lin-Cheng     E-mail:  wanglc@dlut.edu.cn
About author:  03.67.Mn; 03.65.Yz; 05.60.Gg

Cite this article: 

Wang Gen-Fang (王艮芳), Lü Jian-Mei (吕建美), Wang Lin-Cheng (王林成) Spin-star environment assisted entanglement generation in weakly coupled bipartite systems 2014 Chin. Phys. B 23 050311

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Wang Y H and Fang M F 2004 Chin. Phys. 13 1644
[3] Zhou Q P, Fang M F, Liu X J, Chen X M, Wu Q and Xu H Z 2004 Chin. Phys. 13 1881
[4] Yu T and Eberly J H 2009 Science 323 598
[5] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[6] Yu T and Eberly J H 2006 Phys. Rev. Lett. 97 140403
[7] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (New York: Oxford University Press)
[8] Plenio M B and Huelga S F 2002 Phys. Rev. A 88 197901
[9] Yi X X, Zhou L, Yu C S and Song H S 2003 Phys. Rev. A 68 052304
[10] Sinayskiy I, Marais A, Petruccione F and Ekert A 2012 Phys. Rev. Lett. 108 020602
[11] Liao J Q, Huang J F, Kuang L M and Sun C P 2010 Phys. Rev. A 82 052109
[12] Sarovar M, Ishizaki A, Fleming G R and Whaley K B 2010 Nat. Phys. 6 462
[13] Caruso F, Chin A W, Datta A, Huelga S F and Plenio M B 2010 Phys. Rev. A 81 062346
[14] Scholak T, Melo F, Wellens T, Mintert F and Buchleitner F 2011 Phys. Rev. E 83 021912
[15] Cucchietti F M, Paz J P and Zurek W H 2005 Phys. Rev. A 72 052113
[16] Hamdouni Y, Fannes M and Petruccione F 2006 Phys. Rev. B 73 245323
[17] Wesenberg J and Molmer K 2002 Phys. Rev. A 65 062304
[18] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[12] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[13] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[14] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[15] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
No Suggested Reading articles found!