Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 046106    DOI: 10.1088/1674-1056/23/4/046106
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Improving light trapping and conversion efficiency of amorphous silicon solar cell by modified and randomly distributed ZnO nanorods

Jia Zhi-Nan (贾志楠)a b, Zhang Xiao-Dan (张晓丹)a, Liu Yang (刘阳)a, Wang Yan-Feng (王延峰)a, Fan Jun (樊君)a c, Liu Cai-Chi (刘彩池)b, Zhao Ying (赵颖)a
a Institute of Photo-Electronics Thin Film Devices and Technology of Nankai University, Key Laboratory of Photo-Electronics Thin Film Devices and Technology of Tianjin, Tianjin 300071, China;
b School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China;
c School of Information and Engineering, Hebei University of Technology, Tianjin 300130, China
Abstract  Three-dimensional (3D) nanostructures in thin film solar cells have attracted significant attention due to their applications in enhancing light trapping. Enhanced light trapping can result in more effective absorption in solar cells, thus leading to higher short-circuit current density and conversion efficiency. We develop randomly distributed and modified ZnO nanorods, which are designed and fabricated by the following processes: the deposition of a ZnO seed layer on substrate with sputtering, the wet chemical etching of the seed layer to form isolated islands for nanorod growth, the chemical bath deposition of the ZnO nanorods, and the sputtering deposition of a thin Al-doped ZnO (ZnO:Al) layer to improve the ZnO/Si interface. Solar cells employing the modified ZnO nanorod substrate show a considerable increase in solar energy conversion efficiency.
Keywords:  random ZnO nanorod      light trapping Al-doped ZnO      solar cells  
Received:  14 July 2013      Revised:  09 October 2013      Accepted manuscript online: 
PACS:  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  78.35.+c (Brillouin and Rayleigh scattering; other light scattering)  
  77.55.hf (ZnO)  
  88.40.H- (Solar cells (photovoltaics))  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00706 and 2011CBA00707), the High-Technology Research and Development Program of China (Grant No. 2013AA050302), the Science and Technology Support Program of Tianjin City, China (Grant No. 12ZCZDGX03600), the Major Science and Technology SupportProject of Tianjin City, China (Grant No. 11TXSYGX22100), and the Specialized Research Fund for the Ph. D. Program of Higher Education, China (Grant No. 20120031110039).
Corresponding Authors:  Zhang Xiao-Dan     E-mail:  xdzhang@nankai.edu.cn
About author:  61.46.Km; 78.35.+c; 77.55.hf; 88.40.H-

Cite this article: 

Jia Zhi-Nan (贾志楠), Zhang Xiao-Dan (张晓丹), Liu Yang (刘阳), Wang Yan-Feng (王延峰), Fan Jun (樊君), Liu Cai-Chi (刘彩池), Zhao Ying (赵颖) Improving light trapping and conversion efficiency of amorphous silicon solar cell by modified and randomly distributed ZnO nanorods 2014 Chin. Phys. B 23 046106

[1] Hsu M C, Battaglia C, Pahud C, Ruan Z C, Haug F J, Fan S H, Ballif C and Cui Y 2012 Adv. Mater. 2 628
[2] Fan Z Y, Azavi H, Do J W, Moriwaki A, Ergen O, Chueh Y L, Leu P W, Ho J C, Takahashi T, Reichertz L A, Neale S, Yu K, Wu M, Ager J W and Javey A 2009 Nat. Mater. 8 648
[3] Bai A Q, Zheng J, Tao Y L, Zuo Y H, Xue C L, Cheng B W and Wang Q M 2011 Chin. Phys. B 20 116103
[4] Jeong S, Hu L, Lee H R, Garnett E, Choi J W and Cui Y 2010 Nano Lett. 10 2989
[5] Kim J, Hong A J, Nah J W, Shin B, Ross F M and Sadana D K 2012 ACS Nano. 6 265
[6] Zhou H J, Wissinger M, Fallert J, Hauschild R and Stelzl F 2007 Phys. Lett. 91 181112
[7] Wang X D, Summers C J and Wang Z L 2004 Nano Lett. 4 423
[8] Yang C J, Wang S M and Liang S W 2007 Appl. Phys. Lett. 90 033104
[9] Battaglia C, Hsu C M, Söderström K, Escarré J, Haug F J, Charriére M, Boccard M, Despeisse M, Alexander D T L, Cantoni M, Cui Y and Ballif C 2012 ACS Nano. 6 2790
[10] Lin A and Phillips J 2008 Sol. Energy Mater. Sol. Cells 92 1689
[11] Niederberger M and Cölfen H 2006 Phys. Chem. Chem. Phys. 8 3271
[12] Liu D F, Xiang Y J, Wu X C, Zhang Z X, Liu L F, Song L, Zhao X W, Luo S D, Ma W J, Shen J, Zhou W Y, Wang G, Wang C Y and Xie S S 2006 Nano Lett. 6 2375
[13] Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R and Yang P D 2001 Science 292 1897
[14] Pan N, Xue H, Yu M, Cui X, Wang X, Hou G, Huang J and Deng S Z 2010 Nanotechnology 21 225707
[15] Li Y B, Pan H, Lin J Y, Ding J, Feng Y P, Thongmee S, Liu T, Gong H and Wang L 2008 Adv. Mater. 20 1170
[16] Erdélyi R, Nagata T, Rogers D J, Teherani F H, Horváth Z E, Lábadi Z, Baji Z, Wakayam Y and Volk J 2011 Cryst. Growth Des. 11 2515
[17] Qin Y, Wang X and Wang Z L 2008 Nature 451 809
[18] Lee Y J, Sounart T L, Liu J, Spoerke E D, McKenzie B B, Hsu J W P and Voigt J A 2008 Cryst. Growth Des. 8 2036
[19] Law M, Greene L E, Johnson J C, Saykally R and Yang P D 2005 Nat. Mater. 4 455
[20] Yu M, Long Y Z, Sun B and Fan Z Y 2012 Nanoscale 4 2783
[21] Xu C and Wang Z L 2011 Adv. Mater. 23 873
[22] Greene L E, Law M, Tan D H, Montano M, Goldberger J, Somorjai G and Yang P D 2005 Nano Lett. 5 1231
[23] Ferry V E, Verschuuren M A, Li H B T, Verhagen E, Walters R J, Schropp R E I, Atwater H A and Polman A 2010 Opt. Express 18 A237
[24] Spinelli P, Verschuuren M A and Polman A 2012 Nat. Commun. 3 692
[25] Green M A 1982 Solar Cells: Operating Principles, Technology, and System Applications (New Jersey: Prentice-Hall)
[26] Kieven D, Dittrich T, Belaidi A, Tornow J, Schwarzburg K, Allsop N and Lux-Steiner M 2008 Appl. Phys. Lett. 92 153107
[27] Spurgeon J M, Atwater H A and Lewis N S 2008 J. Phys. Chem. C 112 6186
[28] Krunks M, Kärber E, Katerski A, Otto K, Acik I O, Dedova T and Mere A 2010 Sol. Energy Mater. Sol. Cells 94 1191
[29] Kelzenberg M D, Boettcher S W, Petykiewicz J A, Turner-Evans D B, Putnam M C, Warren E L, Spurgeon J M, Briggs R M, Lewis N S and Atwater H A 2010 Nat. Mater. 9 239
[30] Zhu J, Yu Z, Burkhard G F, Hsu C M, Connor S T, Xu Y, Wang Q, Mc Gehee M, Fan S and Cui Y 2009 Nano Lett. 9 279
[31] Kuang Y, Werf K H M, Houweling Z S and Schropp R E I 2011 Appl. Phys. Lett. 98 113111
[32] Ferry V E, Verschuuren M A, Lare M C, Schropp R E I, Atwater H A and Polman A 2011 Nano Lett. 11 4239
[1] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[2] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[3] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[4] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
[5] Surface modulation of halide perovskite films for efficient and stable solar cells
Qinxuan Dai(戴沁煊), Chao Luo(骆超), Xianjin Wang(王显进), Feng Gao(高峰), Xiaole Jiang(姜晓乐), and Qing Zhao(赵清). Chin. Phys. B, 2022, 31(3): 037303.
[6] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[7] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[8] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[9] A silazane additive for CsPbI2Br perovskite solar cells
Ruiqi Cao(曹瑞琪), Yaochang Yue(乐耀昌), Hong Zhang(张弘), Qian Cheng(程倩), Boxin Wang(王博欣), Shilin Li(李世麟), Yuan Zhang(张渊), Shuhong Li(李书宏), and Huiqiong Zhou(周惠琼). Chin. Phys. B, 2022, 31(11): 110101.
[10] Could two-dimensional perovskites fundamentally solve the instability of perovskite photovoltaics
Luoran Chen(陈烙然), Hu Wang(王虎), and Yuchuan Shao(邵宇川). Chin. Phys. B, 2022, 31(11): 117803.
[11] Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells
Zheng Fang(方正), Liu Yang(杨柳), Yongbin Jin(靳永斌), Kaikai Liu(刘凯凯), Huiping Feng(酆辉平), Bingru Deng(邓冰如), Lingfang Zheng(郑玲芳), Changcai Cui(崔长彩), Chengbo Tian(田成波), Liqiang Xie(谢立强), Xipeng Xu(徐西鹏), and Zhanhua Wei(魏展画). Chin. Phys. B, 2022, 31(11): 118801.
[12] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[13] Device simulation of quasi-two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency
Xiao-Ping Xie(谢小平), Qian-Yu Bai(白倩玉), Gang Liu(刘刚), Peng Dong(董鹏), Da-Wei Liu(刘大伟), Yu-Feng Ni(倪玉凤), Chen-Bo Liu(刘晨波), He Xi(习鹤), Wei-Dong Zhu(朱卫东), Da-Zheng Chen(陈大正), and Chun-Fu Zhang(张春福). Chin. Phys. B, 2022, 31(10): 108801.
[14] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[15] Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells
Fei Qi(齐飞), Bo Wu(吴波), Junyuan Xu(徐俊源), Qian Chen(陈潜), Haiquan Shan(单海权), Jiaju Xu(许家驹), and Zong-Xiang Xu(许宗祥). Chin. Phys. B, 2021, 30(10): 108801.
No Suggested Reading articles found!