Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 038102    DOI: 10.1088/1674-1056/23/3/038102
Special Issue: TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research Prev   Next  

From self-assembly to quantum guiding:A review of magnetic atomic structures on noble metal surfaces

Cao Rong-Xing (曹荣幸), Zhang Xiao-Pu (张孝谱), Miao Bing-Feng (缪冰锋), Sun Liang (孙亮), Wu Di (吴镝), You Biao (游彪), Ding Hai-Feng (丁海峰)
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
Abstract  Recent advances in the study of magnetic atomic structures on noble metal surfaces are reviewed. These include one-dimensional strings, two-dimensional hexagonal superlattices, and novel structures stabilized by quantum guiding. The combined techniques of low-temperature scanning tunneling microscopy, kinetic Monte Carlo simulations, and ab initio calculations reveal that surface-state-mediated adatom-step and adatom-adatom interactions are the driving forces for selfassembly of these structures. The formation conditions are further discussed by comparing various experimental systems and the kinetic Monte Carlo simulations. Using scanning tunneling spectroscopy and tight-binding calculations together, we reveal that the spectra of these well-ordered structures have characteristic peaks induced by electronic scattering processes of the atoms within the local environment. Moreover, it is demonstrated that quantum confinement by means of nano-size corrals has significant influence on adatom diffusion and self-assembly, leading to a quantum-guided self-assembly.
Keywords:  surface states      long-range interaction      self-assembly      quantum confinement  
Received:  04 December 2013      Accepted manuscript online: 
PACS:  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  73.21.-b (Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  81.16.Dn (Self-assembly)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB923401) and the National Natural Science Foundation of China (Grant Nos. 10974087, 11374145, 11304150, and 11023002).
Corresponding Authors:  Ding Hai-Feng     E-mail:  hfding@nju.edu.cn

Cite this article: 

Cao Rong-Xing (曹荣幸), Zhang Xiao-Pu (张孝谱), Miao Bing-Feng (缪冰锋), Sun Liang (孙亮), Wu Di (吴镝), You Biao (游彪), Ding Hai-Feng (丁海峰) From self-assembly to quantum guiding:A review of magnetic atomic structures on noble metal surfaces 2014 Chin. Phys. B 23 038102

[1] Bader S D and Parkin S S P 2010 Annu. Rev. Cond. Matter Phys. 1 71
[2] Sun S, Murray C B, Weller D, Folks L and Moser A 2000 Science 287 1989
[3] Gambardella P, Dallmeyer A, Maiti K, Malagoli M C, Eberhardt W, Kern K and Carbone C 2002 Nature 416 301
[4] Gambardella P, Dallmeyer A, Maiti K, Malagoli M C, Rusponi S, Ohresser P, Eberhardt W, Carbone C and Kern K 2004 Phys. Rev. Lett. 93 077203
[5] Fruchart O, Klaua M, Barthel J and Kirschner J 1999 Phys. Rev. Lett. 83 2769
[6] Elmers H J, Hauschild J, Höche H, Gradmann U, Bethge H, Heuer D and Köhler U 1994 Phys. Rev. Lett. 73 898
[7] Shen J, Skomski R, Klaua M, Jenniches H, Manoharan S S and Kirschner J 1997 Phys. Rev. B 56 2340
[8] Knorr N, Brune H, Epple M, Hirstein A, Schneider M A and Kern K 2002 Phys. Rev. B 65 115420
[9] Silly F, Pivetta M, Ternes M, Patthey F, Pelz J P and Schneider W D 2004 Phys. Rev. Lett. 92 016101
[10] Silly F, Pivetta M, Ternes M, Patthey F, Pelz J P and Schneider W D 2004 New J. Phys. 6 16
[11] Stepanyuk V S, Klavsyuk A N, Niebergall L and Bruno P 2005 Phys. Rev. B 72 153407
[12] Brovko O O, Ignatiev P A, Stepanyuk V S and Bruno P 2008 Phys. Rev. Lett. 101 036809
[13] Smirnov A S, Negulyaev N N, HergertW, Saletsky AMand Stepanyuk V S 2009 New J. Phys. 11 063004
[14] Ignatiev P A, Negulyaev N N, Niebergall L, Hashemi H, Hergert W and Stepanyuk V S 2010 Phys. Stat. Sol. (b) 247 2537
[15] Hashemi H, Hergert W and Stepanyuk V S 2010 Phys. Rev. B 81 104418
[16] Eigler D M and Schweizer E K 1990 Nature 344 524
[17] Crommie M F, Lutz C P and Eigler D M 1993 Science 262 218
[18] Manoharan H C, Lutz C P and Eigler D M 2000 Nature 403 512
[19] Braun K F and Rieder K H 2002 Phys. Rev. Lett. 88 096801
[20] Nilius N, Wallis T M and Ho W 2002 Science 297 1853
[21] Wallis T M, Nilius N and Ho W 2002 Phys. Rev. Lett. 89 236802
[22] Hla S W, Braun K F and Rieder K H 2003 Phys. Rev. B 67 201402(R)
[23] Fölsch S, Hyldgaard P, Koch R and Ploog K H 2004 Phys. Rev. Lett. 92 056803
[24] Hirjibehedin C F, Lutz C P and Heinrich A J 2006 Science 312 1021
[25] Lagoute J, Liu X and Fölsch S 2006 Phys. Rev. B 74 125410
[26] Lagoute J, Nacci C and Fölsch S 2007 Phys. Rev. Lett. 98 146804
[27] Wahl P, Simon P, Diekhoener L, Stepanyuk V S, Bruno P, Schneider M A and Kern K 2007 Phys. Rev. Lett. 98 056601
[28] Khajetoorians A A, Wiebe J, Chilian B and Wiesendanger R 2011 Science 332 1062
[29] Gomes K K, MarW, KoW, Guinea F and Manoharan H C 2012 Nature 483 306
[30] Loth S, Baumann S, Lutz C P, Eigler D M and Heinrich A J 2012 Science 335 196
[31] Chambliss D D,Wilson R J and Chiang S 1991 Phys. Rev. Lett. 66 1721
[32] Brune H, Giovannini M, Bromann K and Kern K 1998 Nature 394 451
[33] Whitesides G M and Grzybowski B 2002 Science 295 2418
[34] Nilius N, Rienks E D L, Rust H P and Freund H J 2005 Phys. Rev. Lett. 95 066101
[35] Röder H, Hahn E, Brune H, Bucher J-P and Kern K 1993 Nature 366 141
[36] Gambardella P, Blanc M, Bürgi L, Kuhnke K and Kern K 2000 Surf. Sci. 449 93
[37] Gambardella P, Blanc M, Brune H, Kuhnke K and Kern K 2000 Phys. Rev. B 61 2254
[38] Pennec Y, AuwärterW, Schiffrin A,Weber-Bargioni A, Riemann A and Barth J V 2007 Nat. Nano 2 99
[39] Ma X D, Bazhanov D I, Fruchart O, Yildiz F, Yokoyama T, Przybylski M, Stepanyuk V S, Hergert W and Kirschner J 2009 Phys. Rev. Lett. 102 205503
[40] Barth J V, Costantini G and Kern K 2005 Nature 437 671
[41] Repp J, Moresco F, Meyer G, Rieder K H, Hyldgaard P and Persson M 2000 Phys. Rev. Lett. 85 2981
[42] Koutecký J 1958 Trans. Faraday Soc. 54 1038
[43] Grimley T B 1967 Proc. Phys. Soc. 90 751
[44] Einstein T L and Schrieffer J R 1973 Phys. Rev. B 7 3629
[45] Lau K H and Kohn W 1978 Surf. Sci. 75 69
[46] Tsong T T 1972 Phys. Rev. B 6 417
[47] Tsong T T 1973 Phys. Rev. Lett. 31 1207
[48] Hyldgaard P and Persson M 2000 J. Phys.: Condens. Matter 12 L13
[49] Negulyaev N N, Stepanyuk V S, Niebergall L, Bruno P, Pivetta M, Ternes M, Patthey F and Schneider W D 2009 Phys. Rev. Lett. 102 246102
[50] Negulyaev N N, Stepanyuk V S, Niebergall L, Hergert W, Fangohr H and Bruno P 2006 Phys. Rev. B 74 035421
[51] Hu J, Teng B, Wu F and Fang Y 2008 New J. Phys. 10 023033
[52] Crain J N and Pierce D T 2005 Science 307 703
[53] Menzel M, Mokrousov Y,Wieser R, Bickel J E, Vedmedenko E, Blügel S, Heinze S, von Bergmann K, Kubetzka A and Wiesendanger R 2012 Phys. Rev. Lett. 108 197204
[54] Bose S 2003 Phys. Rev. Lett. 91 207901
[55] Avellino M, Fisher A J and Bose S 2006 Phys. Rev. A 74 012321
[56] Hartmann M J, Reuter M E and Plenio M B 2006 New J. Phys. 8 94
[57] Hyldgaard P and Einstein T L 2003 Appl. Surf. Sci. 212 856
[58] Hyldgaard P and Einstein T L 2005 J. Cryst. Growth 275 e1637
[59] Stepanyuk V S, Negulyaev N N, Niebergall L, Longo R C and Bruno P 2006 Phys. Rev. Lett. 97 186403
[60] Ma L Y, Tang L, Guan Z L, He K, An K, Ma X C, Jia J F, Xue Q K, Han Y, Huang S and Liu F 2006 Phys. Rev. Lett. 97 266102
[61] Negulyaev N N, Stepanyuk V S, Niebergall L, Bruno P, Hergert W, Repp J, Rieder K H and Meyer G 2008 Phys. Rev. Lett. 101 226601
[62] Hinch B J, Koziol C, Toennies J P and Zhang G 1989 Europhys. Lett. 10 341
[63] Smith A R, Chao K J, Niu Q and Shih C K 1996 Science 273 226
[64] Gavioli L, Kimberlin K R, Tringides M C,Wendelken J F and Zhang Z 1999 Phys. Rev. Lett. 82 129
[65] Yeh V, Berbil-Bautista L, Wang C Z, Ho K M and Tringides M C 2000 Phys. Rev. Lett. 85 5158
[66] Luh D A, Miller T, Paggel J J, ChouMY and Chiang T C 2001 Science 292 1131
[67] Özer M M, Jia Y, Wu B, Zhang Z and Weitering H H 2005 Phys. Rev. B 72 113409
[68] Zhang Z, Niu Q and Shih C K 1998 Phys. Rev. Lett. 80 5381
[69] Hache F, Ricard D and Flytzanis C 1986 J. Opt. Soc. Am. B 3 1647
[70] Liu F, Khanna S N and Jena P 1990 Phys. Rev. B 42 976
[71] Qiu Z Q, Pearson J, Berger A and Bader S D 1992 Phys. Rev. Lett. 68 1398
[72] Li J, Przybylski M, Yildiz F, Ma X D andWu Y Z 2009 Phys. Rev. Lett. 102 207206
[73] Lang N D and Avouris P 1998 Phys. Rev. Lett. 81 3515
[74] Guo Y, Zhang Y F, Bao X Y, Han T Z, Tang Z, Zhang L X, Zhu W G, Wang E G, Niu Q, Qiu Z Q, Jia J F, Zhao Z X and Xue Q K 2004 Science 306 1915
[75] Li J, SchneiderWD, Berndt R and Crampin S 1998 Phys. Rev. Lett. 80 3332
[76] Niebergall L, Rodary G, Ding H F, Sander D, Stepanyuk V S, Bruno P and Kirschner J 2006 Phys. Rev. B 74 195436
[77] Pietzsch O, Okatov S, Kubetzka A, Bode M, Heinze S, Lichtenstein A and Wiesendanger R 2006 Phys. Rev. Lett. 96 237203
[78] Oka H, Ignatiev P A, Wedekind S, Rodary G, Niebergall L, Stepanyuk V S, Sander D and Kirschner J 2010 Science 327 843
[79] Ding H F, Pearson J E, Li D, Cheng R, Fradin F Y and Bader S D 2005 Rev. Sci. Instru. 76 123703
[80] Zhang X P, Miao B F, Sun L, Gao C L, Hu A, Ding H F and Kirschner J 2010 Phys. Rev. B 81 125438
[81] Negulyaev N N, Stepanyuk V S, Niebergall L, Bruno P, Auwarter W, Pennec Y, Jahnz G and Barth J V 2009 Phys. Rev. B 79 195411
[82] Stepanyuk V S, Niebergall L, Longo R C, HergertWand Bruno P 2004 Phys. Rev. B 70 075414
[83] Fichthorn K A and Weinberg W H 1992 Phys. Rev. Lett. 68 604
[84] Fichthorn K A and Scheffler M 2000 Phys. Rev. Lett. 84 5371
[85] Brune H 1998 Surf. Sci. Rep. 31 125
[86] Cao R X, Zhang X P, Miao B F, Zhong Z F, Sun L, You B, Hu A and Ding H F 2013 Surf. Sci. 610 65
[87] Ternes M, Weber C, Pivetta M, Patthey F, Pelz J P, Giamarchi T, Mila F and Schneider W D 2004 Phys. Rev. Lett. 93 146805
[88] Li J, Schneider W D and Berndt R 1997 Phys. Rev. B 56 7656
[89] Ding H F, Stepanyuk V S, Ignatiev P A, Negulyaev N N, Niebergall L, Wasniowska M, Gao C L, Bruno P and Kirschner J 2007 Phys. Rev. B 76 033409
[90] Smoluchowski R 1941 Phys. Rev. 60 661
[91] Cao R X, Zhong Z F, Hu J, Zhang X P, Miao B F, Sun L, You B,Wu D, Hu A, Zhang W Y and Ding H F 2013 Appl. Phys. Lett. 103 081608
[92] Schiffrin A, Reichert J, Auwärter W, Jahnz G, Pennec Y, Weber- Bargioni A, Stepanyuk V S, Niebergall L, Bruno P and Barth J V 2008 Phys. Rev. B 78 035424
[93] Cao R X, Miao B F, Zhong Z F, Sun L, You B, Zhang W, Wu D, Hu A, Bader S D and Ding H F 2013 Phys. Rev. B 87 085415
[94] Hu J, Cao R X, Miao B F, Liu Z, Zhong Z F, Sun L, You B, Wu D, Zhang W, Hu A, Bader S D and Ding H F 2013 Surf. Sci. 618 148
[95] Cheng Z, Wyrick J, Luo M, Sun D, Kim D, Zhu Y, Lu W, Kim K, Einstein T L and Bartels L 2010 Phys. Rev. Lett. 105 066104
[96] Pivetta M, Pacchioni G E, Schlickum U, Barth J V and Brune H 2013 Phys. Rev. Lett. 110 086102
[97] Bode M, Getzlaff M and Wiesendanger R 1998 Phys. Rev. Lett. 81 4256
[98] Wulfhekel W and Kirschner J 1999 Appl. Phys. Lett. 75 1944
[99] Ding H F, Wulfhekel W and Kirschner J 2002 Europhys. Lett. 57 100
[100] Bode M 2003 Rep. Prog. Phys. 66 523
[1] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[2] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[3] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[4] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[5] Phoretic self-assembly of active colloidal molecules
Lijie Lei(雷李杰), Shuo Wang(王硕), Xinyuan Zhang(张昕源), Wenjie Lai(赖文杰), Jinyu Wu(吴晋宇), and Yongxiang Gao(高永祥). Chin. Phys. B, 2021, 30(5): 056112.
[6] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[7] Distribution of donor states on the surfaceof AlGaN/GaN heterostructures
Yue-Bo Liu(柳月波), Hong-Hui Liu(刘红辉), Jun-Yu Shen(沈俊宇), Wan-Qing Yao(姚婉青), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(12): 128102.
[8] Abnormal phenomenon of source-drain current of AlGaN/GaN heterostructure device under UV/visible light irradiation
Yue-Bo Liu(柳月波), Jun-Yu Shen(沈俊宇), Jie-Ying Xing(邢洁莹), Wan-Qing Yao(姚婉青), Hong-Hui Liu(刘红辉), Ya-Qiong Dai(戴雅琼), Long-Kun Yang(杨隆坤), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(11): 117302.
[9] Scalable preparation of water-soluble ink of few-layered WSe2 nanosheets for large-area electronics
Guoyu Xian(冼国裕), Jianshuo Zhang(张建烁), Li Liu(刘丽), Jun Zhou(周俊), Hongtao Liu(刘洪涛), Lihong Bao(鲍丽宏), Chengmin Shen(申承民), Yongfeng Li(李永峰), Zhihui Qin(秦志辉), Haitao Yang(杨海涛). Chin. Phys. B, 2020, 29(6): 066802.
[10] Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures
Hai-Bin Shi(石海滨), Li-Qin Yan(闫丽琴), Yang-Tao Su(苏仰涛), Li Wang(王力), Xin-Yu Cao(曹昕宇), Lin-Zhu Bi(毕林竹), Yang Meng(孟洋), Yang Sun(孙阳), and Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2020, 29(11): 117302.
[11] Electronic structure of correlated topological insulator candidate YbB6 studied by photoemission and quantum oscillation
T Zhang(张腾), G Li(李岗), S C Sun(孙淑翠), N Qin(秦娜), L Kang(康璐), S H Yao(姚淑华), H M Weng(翁红明), S K Mo, L Li(李璐), Z K Liu(柳仲楷), L X Yang(杨乐仙), Y L Chen(陈宇林). Chin. Phys. B, 2020, 29(1): 017304.
[12] Adsorption behavior of triphenylene on Ru(0001) investigated by scanning tunneling microscopy
Li-Wei Jing(井立威), Jun-Jie Song(宋俊杰), Yu-Xi Zhang(张羽溪), Qiao-Yue Chen(陈乔悦), Kai-Kai Huang(黄凯凯), Han-Jie Zhang(张寒洁), Pi-Mo He(何丕模). Chin. Phys. B, 2019, 28(7): 076801.
[13] Phosphine-free synthesis of FeTe2 nanoparticles and self-assembly into tree-like nanoarchitectures
Hongyu Wang(王红宇), Min Wu(武敏), Yixuan Wang(王艺璇), Hao Wang(王浩), Xiaoli Huang(黄晓丽), Xinyi Yang(杨新一). Chin. Phys. B, 2019, 28(10): 106401.
[14] Effect of substrate type on Ni self-assembly process
Xuzhao Chai(柴旭朝), Boyang Qu(瞿博阳), Yuechao Jiao(焦岳超), Ping Liu(刘萍), Yanxia Ma(马彦霞), Fengge Wang(王凤歌), Xiaoquan Li(李晓荃), Xiangqian Fang(方向前), Ping Han(韩平), Rong Zhang(张荣). Chin. Phys. B, 2019, 28(1): 016102.
[15] Unconventional lattice dynamics in few-layer h-BN and indium iodide crystals
Gan Hu(胡干), Jian-Qi Huang(黄建啟), Ya-Ning Wang(王雅宁), Teng Yang(杨腾), Bao-Juan Dong(董宝娟), Ji-Zhang Wang(王吉章), Bo Zhao(赵波), Sajjad Ali(阿里·萨贾德), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2018, 27(8): 086301.
No Suggested Reading articles found!