Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 106401    DOI: 10.1088/1674-1056/ab3b51
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Phosphine-free synthesis of FeTe2 nanoparticles and self-assembly into tree-like nanoarchitectures

Hongyu Wang(王红宇)1,2, Min Wu(武敏)1, Yixuan Wang(王艺璇)1, Hao Wang(王浩)2, Xiaoli Huang(黄晓丽)1, Xinyi Yang(杨新一)1
1 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
2 College of Material Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
Abstract  Manipulating the self-assembly of transition metal telluride nanocrystals (NCs) creates opportunities for exploring new properties and device applications. Iron ditelluride (FeTe2) has recently emerged as a new class of magnetic semiconductor with three-dimensional (3D) magnetic ordering and narrow band gap structure, yet the self-assembly of FeTe2 NCs has not been achieved. Herein, the tree-like FeTe2 nanoarchitectures with orthorhombic crystal structure have been successfully synthesized by hot-injection solvent thermal approach using phosphine-free Te precursor. The morphology, size, and crystal structure have been investigated using transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and powder x-ray diffraction (XRD). We study the formation process of tree-like FeTe2 NCs according to trace the change of the sample morphology with the reaction time. It was found that the FeTe2 nanoparticles show oriented aggregation and self-assembly behavior with the increase of reaction time, which is attributed to size-dependent magnetism properties of the samples. The magnetic interaction is thought to be the driving force of nanoparticle self-organization.
Keywords:  self-assembly      transition metal tellurides      phosphine-free Te precursor      tree-like nanoarchitectures  
Received:  14 June 2019      Revised:  30 July 2019      Accepted manuscript online: 
PACS:  64.75.Yz (Self-assembly)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11874027) and the China Postdoctoral Science Foundation (Grant Nos. 2019T120233 and 2017M621198).
Corresponding Authors:  Xiaoli Huang, Xinyi Yang     E-mail:  huangxiaoli@jlu.edu.cn;yangxinyi@jlu.edu.cn

Cite this article: 

Hongyu Wang(王红宇), Min Wu(武敏), Yixuan Wang(王艺璇), Hao Wang(王浩), Xiaoli Huang(黄晓丽), Xinyi Yang(杨新一) Phosphine-free synthesis of FeTe2 nanoparticles and self-assembly into tree-like nanoarchitectures 2019 Chin. Phys. B 28 106401

[1] Venkatasubramanian R, Colpitts T, Watko E, Lamvik M and El-Masry N 1997 J. Cryst. Growth 170 817
[2] Mamur H, Bhuiyan M R A, Korkmaz F and Nil M 2018 Renewable Sustainable Energy Rev. 82 4159
[3] Friederichs G M, Wörsching M P B and Johrendt D 2015 Supercond. Sci. Technol. 28 095005
[4] Mal J, Nancharaiah Y V, van Hullebusch E D and Lens P N L 2016 RSC Adv. 6 41477
[5] Zheng Y, Gao S and Ying J Y 2007 Adv. Mater. 19 376
[6] Harrache Y and Bouarissa N 2019 Solid State Commun. 295 26
[7] Ghosh A and Thangavel R 2017 Indian J. Phys. 91 1339
[8] Fang L, Chen J, Xu L, Su W N, Yu Y, Xu J and Ma Z Y 2013 Chin. Phys. B 22 098802
[9] Li Y, Chen J, Han X, Li Y, Zhang Z and Ma Y 2019 Nano 13 1850146
[10] Liu N, Li S X, Ye Y C and Yao Y L 2018 Chin. Phys. B 27 127303
[11] Tan C, Qi X, Liu Z, Zhao F, Li H, Huang X, Shi L, Zheng B, Zhang X, Xie L, Tang Z, Huang W and Zhang H 2015 J. Am. Chem. Soc. 137 1565
[12] Mao Y, Kanungo M, Hemraj-Benny T and Wong S S 2006 J. Phys. Chem. B 110 702
[13] Wang Y, Dai Q, Zou B, Yu W W, Liu B and Zou G 2010 Langmuir 26 19129
[14] Zhu Z P, Wei B, Zhang J H and Wang J 2014 Chin. Phys. B 23 077202
[15] Chen Z and O'Brien S 2008 ACS Nano 2 1219
[16] Talapin D V 2008 ACS Nano 2 1097
[17] Mueggenburg K E, Lin X M, Goldsmith R H and Jaeger H M 2007 Nat. Mater. 6 656
[18] Nykypanchuk D, Maye M M, van der Lelie D and Gang O 2008 Nature 451 549
[19] Landman U and Luedtke W D 2004 Faraday Discuss. 125 1
[20] Talapin D V, Shevchenko E V, Murray C B, Titov A V and Kral P 2007 Nano Lett. 7 1213
[21] Shevchenko E V, Talapin D V, Kotov N A, O'Brien S and Murray C B 2006 Nature 439 55
[22] Ziherl P and Kamien R D 2001 J. Phys. Chem. B 105 10147
[23] Prasad B L V, Stoeva S I, Sorensen C M and Klabunde K J 2002 Langmuir 18 7515
[24] Gao J, Zhang B, Zhang X and Xu B 2006 Angew Chem. Int. Ed. Engl. 45 1220
[25] Yang X, Wang Y, Sui Y, Huang X, Cui T, Wang C, Liu B, Zou G and Zou B 2012 Langmuir 28 17811
[26] Wang Y, Dai Q, Wang L, Zou B, Cui T, Liu B, Yu W W, Hu M Z and Zou G 2010 J. Phys. Chem. C 114 11425
[27] Yang X, Zhou B, Liu C, Sui Y, Xiao G, Wei Y, Wang X and Zou B 2017 Nano Res. 10 2311
[28] Deng L, Zhao Y, Zhou P, Xu H and Wang Y 2016 Chin. Phys. B 25 128704
[29] Tripp S L, Dunin-Borkowski R E and Wei A 2003 Angew Chem. Int. Ed. Engl. 42 5591
[30] Tripp S L, Pusztay S V, Ribbe A E and Wei A 2002 J. Am. Chem. Soc. 124 7914
[31] Wu M, Wang Y, Wang H, Wang H, Sui Y, Du F, Yang X and Zou B 2018 Nanoscale 10 21928
[32] Zhang W, Yang Z, Zhan J, Yang L, Yu W, Zhou G and Qian Y 2001 Mater. Lett. 47 367
[33] Liu A, Chen X, Zhang Z, Jiang Y and Shi C 2006 Solid State Commun. 138 538
[34] Oyler K D, Ke X, Sines I T, Schiffer P and Schaak R E 2009 Chem. Mater. 21 3655
[35] Deng D W, Li P and Gu Y Q 2009 Cryst. Res. Technol. 44 629
[36] Wan B, Hu C, Feng B, Xi Y and He X 2009 Mater. Sci. Eng. B 163 57
[37] Jiang P, Zhu D L, Zhu C N, Zhang Z L, Zhang G J and Pang D W 2015 Nanoscale 7 19310
[38] Sines I T, Vaughn D D, Biacchi A J, Kingsley C E, Popczun E J and Schaak R E 2012 Chem. Mater. 24 3088
[39] Witt E, Witt F, Trautwein N, Fenske D, Neumann J, Borchert H, Parisi J and Kolny-Olesiak J 2012 Phys. Chem. Chem. Phys. 14 11706
[1] Phoretic self-assembly of active colloidal molecules
Lijie Lei(雷李杰), Shuo Wang(王硕), Xinyuan Zhang(张昕源), Wenjie Lai(赖文杰), Jinyu Wu(吴晋宇), and Yongxiang Gao(高永祥). Chin. Phys. B, 2021, 30(5): 056112.
[2] Scalable preparation of water-soluble ink of few-layered WSe2 nanosheets for large-area electronics
Guoyu Xian(冼国裕), Jianshuo Zhang(张建烁), Li Liu(刘丽), Jun Zhou(周俊), Hongtao Liu(刘洪涛), Lihong Bao(鲍丽宏), Chengmin Shen(申承民), Yongfeng Li(李永峰), Zhihui Qin(秦志辉), Haitao Yang(杨海涛). Chin. Phys. B, 2020, 29(6): 066802.
[3] Adsorption behavior of triphenylene on Ru(0001) investigated by scanning tunneling microscopy
Li-Wei Jing(井立威), Jun-Jie Song(宋俊杰), Yu-Xi Zhang(张羽溪), Qiao-Yue Chen(陈乔悦), Kai-Kai Huang(黄凯凯), Han-Jie Zhang(张寒洁), Pi-Mo He(何丕模). Chin. Phys. B, 2019, 28(7): 076801.
[4] Effect of substrate type on Ni self-assembly process
Xuzhao Chai(柴旭朝), Boyang Qu(瞿博阳), Yuechao Jiao(焦岳超), Ping Liu(刘萍), Yanxia Ma(马彦霞), Fengge Wang(王凤歌), Xiaoquan Li(李晓荃), Xiangqian Fang(方向前), Ping Han(韩平), Rong Zhang(张荣). Chin. Phys. B, 2019, 28(1): 016102.
[5] Phase transition of a diblock copolymer and homopolymer hybrid system induced by different properties of nanorods
Xiao-bo Geng(耿晓波), Jun-xing Pan(潘俊星), Jin-jun Zhang(张进军), Min-na Sun(孙敏娜), Jian-yong Cen(岑建勇). Chin. Phys. B, 2018, 27(5): 058102.
[6] Hydrophobic nanochannel self-assembled by amphipathic Janus particles confined in aqueous nano-space
Gang Fang(方钢), Nan Sheng(盛楠), Tan Jin(金坦), Yousheng Xu(许友生), Hai Sun(孙海), Jun Yao(姚军), Wei Zhuang(庄巍), Haiping Fang(方海平). Chin. Phys. B, 2018, 27(3): 030505.
[7] Enhanced performance of a solar cell based on a layer-by-layer self-assembled luminescence down-shifting layer of core-shell quantum dots
Ni Liu(刘妮), Shu-Xin Li(李淑鑫), Ying-Chun Ye(叶迎春), Yan-Li Yao(姚延立). Chin. Phys. B, 2018, 27(12): 127303.
[8] Improving self-assembly quality of colloidal crystal guided by statistical design of experiments
Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Haiming Zhang(张海明), Ling Liu(刘玲), Jichao Li(李继超), Dabao Yang(杨大宝). Chin. Phys. B, 2017, 26(3): 038105.
[9] Controllable preparation of tungsten/tungsten carbide nanowires or nanodots in nanostructured carbon with hollow macroporous core/mesoporous shell
Xiao-Na Ren(任晓娜), Min Xia(夏敏), Qing-Zhi Yan(燕青芝), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2017, 26(3): 038103.
[10] Anisotropic formation mechanism and nanomechanics for the self-assembly process of cross-β peptides
Li Deng(邓礼), Yurong Zhao(赵玉荣), Peng Zhou(周鹏), Hai Xu(徐海), Yanting Wang(王延颋). Chin. Phys. B, 2017, 26(12): 128701.
[11] Modulation of intra- and inter-sheet interactions in short peptide self-assembly by acetonitrile in aqueous solution
Li Deng(邓礼), Yurong Zhao(赵玉荣), Peng Zhou(周鹏), Hai Xu(徐海), Yanting Wang(王延颋). Chin. Phys. B, 2016, 25(12): 128704.
[12] Hierarchical processes in β -sheet peptide self-assembly from the microscopic to the mesoscopic level
Li Deng(邓礼) and Hai Xu(徐海). Chin. Phys. B, 2016, 25(1): 018701.
[13] Self-assembly of block copolymers grafted onto a flat substrate: Recent progress in theory and simulations
Zheng Wang(王铮) and Bao-Hui Li(李宝会). Chin. Phys. B, 2016, 25(1): 016402.
[14] Performance improvement in polymeric thin film transistors using chemically modified both silver bottom contacts and dielectric surfaces
Xie Ying-Tao (谢应涛), Ouyang Shi-Hong (欧阳世宏), Wang Dong-Ping (王东平), Zhu Da-Long (朱大龙), Xu Xin (许鑫), Tan Te (谭特), Fong Hon-Hang (方汉铿). Chin. Phys. B, 2015, 24(9): 096803.
[15] Self-assembly of lamella-forming diblock copolymers confined in nanochannels: Effect of confinement geometry
Yu Bin (于彬), Deng Jian-Hua (邓建华), Wang Zheng (王铮), Li Bao-Hui (李宝会), Shi An-Chang (史安昌). Chin. Phys. B, 2015, 24(4): 046402.
No Suggested Reading articles found!