Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 037401    DOI: 10.1088/1674-1056/23/3/037401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study of orbital ordering in cubic fluoride KCrF3

Ming Xing (明星)a b, Xiong Liang-Bin (熊良斌)a, Xu Huo-Xi (徐火希)a, Du Fei (杜菲)b, Wang Chun-Zhong (王春忠)b, Chen Gang (陈岗)b
a College of Physics and Electronic Information, Huanggang Normal University, Huanggang 438000, China;
b College of Physics, State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  Comprehensive first-principles calculations are performed to provide insight into the intriguing physical properties of the ternary cubic fluoride KCrF3. The electronic structures exhibit a prominent dependence on the effective local Coulomb interaction parameter Ueff. The ground state of the cubic phase is a ferromagnetic (FM) half-metal with Ueff equal to 0, 2, and 4 eV, whereas the insulating A-type antiferromagnetic (A-AFM) state with concomitant homogeneous orbital ordering is more robust than the FM state for Ueff exceeding 4 eV. We propose that the origin of the orbital ordering is purely electronic when the cooperative Jahn–Teller distortions are absent in cubic KCrF3.
Keywords:  electron density of states      band structure      orbital ordering      first-principles calculations  
Received:  14 June 2013      Revised:  03 September 2013      Accepted manuscript online: 
PACS:  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  71.20.Be (Transition metals and alloys)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104101 and 11004073) and the Scientific and Technologic Research Program of Department of Education of Hubei Province, China (Grant No. D20132902).
Corresponding Authors:  Chen Gang     E-mail:  mingxing06@mails.jlu.edu.cn

Cite this article: 

Ming Xing (明星), Xiong Liang-Bin (熊良斌), Xu Huo-Xi (徐火希), Du Fei (杜菲), Wang Chun-Zhong (王春忠), Chen Gang (陈岗) First-principles study of orbital ordering in cubic fluoride KCrF3 2014 Chin. Phys. B 23 037401

[1] Tokura Y and Nagaosa N 2000 Science 288 462
[2] Jiang Q, Kang Y T and Yao D X 2013 Chin. Phys. B 22 087402
[3] Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039
[4] Bao J C, Zhang N, Cao H X and Geng T 2008 Chin. Phys. B 17 317
[5] Liu D Y, Chen D M and Zou L J 2009 Chin. Phys. B 18 4497
[6] Edwards A J and Peacock R D 1959 J. Chem. Soc. 41 26
[7] Yoneyama S and Hirakawa K 1966 J. Phys. Soc. Jpn. 21 183
[8] Margadonna S and Karotsis G 2006 J. Am. Chem. Soc. 128 16436
[9] Xiao Y, Su Y, Li H F, Kumar C M N, Mittal R, Persson J, Senyshyn A, Gross K and Brueckel Th 2010 Phys. Rev. B 82 094437
[10] Xu Y H, Hao X F, Lü M F, Wu Z J, Zhou D F and Meng J 2008 J. Chem. Phys. 128 164721
[11] Giovannetti G, Margadonna S and van den Brink J 2008 Phys. Rev. B 77 075113
[12] Wang G T, Li Z, Zheng L H and Yang Z X 2011 Phys. Rev. B 84 045111
[13] Wang G T, Zhang M P, Li Z and Zheng L H 2012 Acta Phys. Sin. 61 37102 (in Chinese)
[14] Zhang M P and Wang G T 2012 Mod. Phys. Lett. B 26 1150025
[15] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[16] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[17] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[18] Cococcioni M and de Gironcoli S 2005 Phys. Rev. B 71 035105
[19] de Groot R A, Mueller F M, van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024
[20] Huang Z F, Du F, Wang C Z, Wang D P and Chen G 2007 Phys. Rev. B 75 054411
[21] Gehring G A and Gehring K A 1975 Rep. Prog. Phys. 38 1
[22] Engleman R and Halperin B 1970 Phys. Rev. B 2 75
[23] Kugel K I and Khomskii D I 1973 Sov. Phys. JETP 37 725
[24] Khomskii D I and Mostovoy M V 2003 J. Phys. A: Math. Gen. 36 9197
[25] Medvedeva J E, Korotin M A, Anisimov V I and Freeman A J 2002 Phys. Rev. B 65 172413
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[7] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[8] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[9] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[10] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[11] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[12] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[13] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[14] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[15] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
No Suggested Reading articles found!