Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 030311    DOI: 10.1088/1674-1056/23/3/030311
GENERAL Prev   Next  

Soliton breathers in spin-1 Bose–Einstein condensates

Ji Shen-Tong (冀慎统), Yan Pei-Gen (颜培根), Liu Xue-Shen (刘学深)
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  We consider a spin-1 Bose–Einstein condensate trapped in a harmonic potential with different nonlinearity coefficients. We illustrate the dynamics of soliton breathers in two-component and three-component states by numerically solving the one-dimensional time-dependent coupled Gross–Pitaecskii equations (GPEs). We present that two condensates with repulsive interspecies interactions make elastic collision and novel soliton breathers are created in two-component state. We also demonstrate novel soliton breathers in three-component state with attractive coupling constants. Furthermore, possible reasons for creating soliton breathers are discussed.
Keywords:  spin-1 Bose–Einstein condensate      soliton breathers      Gross–Pitaecskii equations (GPEs)  
Received:  27 September 2013      Revised:  07 November 2013      Accepted manuscript online: 
PACS:  03.75.Mn (Multicomponent condensates; spinor condensates)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11271158 and 11174108).
Corresponding Authors:  Liu Xue-Shen     E-mail:  liuxs@jlu.edu.cn

Cite this article: 

Ji Shen-Tong (冀慎统), Yan Pei-Gen (颜培根), Liu Xue-Shen (刘学深) Soliton breathers in spin-1 Bose–Einstein condensates 2014 Chin. Phys. B 23 030311

[1] Stenger J, Inouye S, Stamper-Kurn D M, Miesner H J, Chikkatur A P and Ketterle W 1998 Nature 396 345
[2] Miesner H J, Stamper-Kurn D M, Stenger J, Inouye S, Chikkatur A P and Ketterle W 1999 Phys. Rev. Lett. 82 2228
[3] Chang M S, Qin Q, Zhang W, You L and Chapman M S 2005 Nat. Phys. 1 111
[4] Ho T L 1998 Phys. Rev. Lett. 81 742
[5] Ohmi T and Machida K 1998 J. Phys. Soc. Jpn. 67 1822
[6] Choi J y, Kwon W J and Shin Y i 2012 Phys. Rev. Lett. 108 035301
[7] Zhai H, Chen W Q, Xu Z and Chang L 2003 Phys. Rev. A 68 043602
[8] Ieda J, Miyakawa T and Wadati M 2004 Phys. Rev. Lett. 93 194102
[9] Ieda J, Miyakawa T and Wadati M 2004 J. Phys. Soc. Jpn. 73 2996
[10] Li L, Li Z, Malomed B A, Mihalache D and Liu W M 2005 Phys. Rev. A 72 033611
[11] Uchiyama M, Ieda J and Wadati M 2006 J. Phys. Soc. Jpn. 75 064002
[12] Nistazakis H E, Frantzeskakis D J, Kevrekidis P G, Malomed B A and Carretero-González R 2008 Phys. Rev. A 77 033612
[13] Dabrowska-Wüster B J, Ostrovskaya E A, Alexander T J and Kivshar Y S 2007 Phys. Lett. A 75 023617
[14] Zhong W P, Belić M R, Lu Y and Huang T 2010 Phys. Rev. E 81 011605
[15] Zhao L C and Liu J 2012 J. Opt. Soc. Am. B 29 3119
[16] Inouye S, Andrews M R, Stenger J, Miesner H J, Stamper-Kurn D M and Ketterle W 1998 Nature 392 151
[17] Cornish S L, Claussen N R, Roberts J L, Cornell E A and Wieman C E 2000 Phys. Rev. Lett. 85 1795
[18] Donley E A, Claussen N R, Cornish S L, Roberts J L, Cornell E A and Wieman C E 2001 Nature 412 295
[19] Zhao L C and Liu J 2013 Phys. Rev. E 87 013201
[20] Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150
[21] Cornish S L, Thompson S T and Wieman C E 2006 Phys. Rev. Lett. 96 170401
[22] Abdullaev F Kh, Kamchatnov A M, Konotop V V and Brazhnyi V A 2003 Phys. Rev. Lett. 90 230402
[23] Wang Y S, Yan P G, Li B and Liu X S 2012 Chin. Phys. B 21 010309
[24] Yan P G, Wang Y S, Ji S T and Liu X S 2012 Phys. Lett. A 376 3141
[25] Yan P G, Ji S T and Liu X S 2013 Phys. Lett. A 377 878
[26] Kevrekidis P G, Theocharis G, Frantzeskakis D J and Malomed B A 2003 Phys. Rev. Lett. 90 230401
[27] Zhang X F, Hu X H, Liu X X and Liu W M 2009 Phys. Rev. A 79 033630
[28] Matuszewski M, Alexander T J and Kivshar Y S 2009 Phys. Rev. A 80 012602
[29] Song S W, Wang D S, Wang H and Liu W M 2012 Phys. Rev. A 85 063617
[30] Hai W, Lee C and Chong G 2004 Phys. Rev. A 70 053621
[31] Matuszewski M 2010 Phys. Rev. A 82 053630
[32] Bao W, Jaksch D and Markovich P A 2003 J. Comput. Phys. 187 318
[33] Bao W and Zhang Y 2005 Math. Models Meth. Appl. Sci. 15 1863
[34] Hua W, Li B and Liu X S 2011 Chin. Phys. B 20 060308
[35] Zhao L C, Yang Z Y, Ling L M and Liu J 2011 Phys. Lett. A 375 1839
[36] Baronio F, Degasperis A, Conforti M and Wabnitz S 2012 Phys. Rev. Lett. 109 044102
[37] Nistazakis H E, Frantzeskakis D J, Kevrekidis P G, Malomed B A, Carretero-González R and Bishop A R 2007 Phys. Rev. A 76 063603
[1] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
[2] Spin current in a spinor Bose-Einstein condensate induced by a gradient magnetic field
Li Tian(田丽), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(11): 110302.
[3] One-dimensional atom laser in microgravity
Yi Qin(秦毅), Xiaoyang Shen(沈晓阳), and Lin Xia(夏林). Chin. Phys. B, 2021, 30(11): 110306.
[4] Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling
Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Han-Zhao Tang(唐翰昭), and Ya-Fei Song(宋亚飞). Chin. Phys. B, 2021, 30(10): 106701.
[5] Dynamics of bright soliton in a spin-orbit coupled spin-1 Bose-Einstein condensate
Hui Guo(郭慧), Xu Qiu(邱旭), Yan Ma(马燕), Hai-Feng Jiang(姜海峰), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2021, 30(6): 060310.
[6] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[7] Lattice configurations in spin-1 Bose–Einstein condensates with the SU(3) spin–orbit coupling
Ji-Guo Wang(王继国)†, Yue-Qing Li(李月晴), and Yu-Fei Dong(董雨菲). Chin. Phys. B, 2020, 29(10): 100304.
[8] Collapses-revivals phenomena induced by weak magnetic flux in diamond chain
Na-Na Chang(常娜娜), Wen-Quan Jing(景文泉), Yu Zhang(张钰), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2020, 29(1): 010306.
[9] Cyclotron dynamics of neutral atoms in optical lattices with additional magnetic field and harmonic trap potential
Ai-Xia Zhang(张爱霞), Ying Zhang(张莹), Yan-Fang Jiang(姜艳芳), Zi-Fa Yu(鱼自发), Li-Xia Cai(蔡丽霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(1): 010307.
[10] Propagation of dark soliton interacting with domain wall in two immiscible Bose-Einstein condensates
Lang Zheng(郑浪), Yi-Cai Zhang(张义财), Chao-Fei Liu(刘超飞). Chin. Phys. B, 2019, 28(11): 116701.
[11] Manipulating transition of a two-component Bose-Einstein condensate with a weak δ-shaped laser
Bo Li(李博), Xiao-Jun Jiang(蒋小军), Xiao-Lin Li(李晓林), Wen-Hua Hai(海文华), Yu-Zhu Wang(王育竹). Chin. Phys. B, 2019, 28(10): 100303.
[12] SU(3) spin-orbit-coupled Bose-Einstein condensate confined in a harmonic plus quartic trap
Hao Li(李昊), Fanglin Chen(陈方林). Chin. Phys. B, 2019, 28(7): 070302.
[13] Ground-state vortex structures of a rotating binary dipolar Bose-Einstein condensate confined in harmonic plus quartic potential
Guang-Ping Chen(陈光平), Chang-Bing Qiao(乔昌兵), Hui Guo(郭慧), Lin-Xue Wang(王林雪), Ya-Jun Wang(王雅君), Ren-Bing Tan(谭仁兵). Chin. Phys. B, 2019, 28(1): 010308.
[14] The ground states and pseudospin textures of rotating two-component Bose-Einstein condensates trapped in harmonic plus quartic potential
Yan Liu(刘燕), Su-Ying Zhang(张素英). Chin. Phys. B, 2016, 25(9): 090304.
[15] Weakly interacting spinor Bose-Einstein condensates with three-dimensional spin-orbit coupling
Shu-Wei Song(宋淑伟), Rui Sun(孙蕊), Hong Zhao(赵洪), Xuan Wang(王暄), Bao-Zhong Han(韩宝忠). Chin. Phys. B, 2016, 25(4): 040305.
No Suggested Reading articles found!