|
|
Soliton breathers in spin-1 Bose–Einstein condensates |
Ji Shen-Tong (冀慎统), Yan Pei-Gen (颜培根), Liu Xue-Shen (刘学深) |
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China |
|
|
Abstract We consider a spin-1 Bose–Einstein condensate trapped in a harmonic potential with different nonlinearity coefficients. We illustrate the dynamics of soliton breathers in two-component and three-component states by numerically solving the one-dimensional time-dependent coupled Gross–Pitaecskii equations (GPEs). We present that two condensates with repulsive interspecies interactions make elastic collision and novel soliton breathers are created in two-component state. We also demonstrate novel soliton breathers in three-component state with attractive coupling constants. Furthermore, possible reasons for creating soliton breathers are discussed.
|
Received: 27 September 2013
Revised: 07 November 2013
Accepted manuscript online:
|
PACS:
|
03.75.Mn
|
(Multicomponent condensates; spinor condensates)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11271158 and 11174108). |
Corresponding Authors:
Liu Xue-Shen
E-mail: liuxs@jlu.edu.cn
|
Cite this article:
Ji Shen-Tong (冀慎统), Yan Pei-Gen (颜培根), Liu Xue-Shen (刘学深) Soliton breathers in spin-1 Bose–Einstein condensates 2014 Chin. Phys. B 23 030311
|
[1] |
Stenger J, Inouye S, Stamper-Kurn D M, Miesner H J, Chikkatur A P and Ketterle W 1998 Nature 396 345
|
[2] |
Miesner H J, Stamper-Kurn D M, Stenger J, Inouye S, Chikkatur A P and Ketterle W 1999 Phys. Rev. Lett. 82 2228
|
[3] |
Chang M S, Qin Q, Zhang W, You L and Chapman M S 2005 Nat. Phys. 1 111
|
[4] |
Ho T L 1998 Phys. Rev. Lett. 81 742
|
[5] |
Ohmi T and Machida K 1998 J. Phys. Soc. Jpn. 67 1822
|
[6] |
Choi J y, Kwon W J and Shin Y i 2012 Phys. Rev. Lett. 108 035301
|
[7] |
Zhai H, Chen W Q, Xu Z and Chang L 2003 Phys. Rev. A 68 043602
|
[8] |
Ieda J, Miyakawa T and Wadati M 2004 Phys. Rev. Lett. 93 194102
|
[9] |
Ieda J, Miyakawa T and Wadati M 2004 J. Phys. Soc. Jpn. 73 2996
|
[10] |
Li L, Li Z, Malomed B A, Mihalache D and Liu W M 2005 Phys. Rev. A 72 033611
|
[11] |
Uchiyama M, Ieda J and Wadati M 2006 J. Phys. Soc. Jpn. 75 064002
|
[12] |
Nistazakis H E, Frantzeskakis D J, Kevrekidis P G, Malomed B A and Carretero-González R 2008 Phys. Rev. A 77 033612
|
[13] |
Dabrowska-Wüster B J, Ostrovskaya E A, Alexander T J and Kivshar Y S 2007 Phys. Lett. A 75 023617
|
[14] |
Zhong W P, Belić M R, Lu Y and Huang T 2010 Phys. Rev. E 81 011605
|
[15] |
Zhao L C and Liu J 2012 J. Opt. Soc. Am. B 29 3119
|
[16] |
Inouye S, Andrews M R, Stenger J, Miesner H J, Stamper-Kurn D M and Ketterle W 1998 Nature 392 151
|
[17] |
Cornish S L, Claussen N R, Roberts J L, Cornell E A and Wieman C E 2000 Phys. Rev. Lett. 85 1795
|
[18] |
Donley E A, Claussen N R, Cornish S L, Roberts J L, Cornell E A and Wieman C E 2001 Nature 412 295
|
[19] |
Zhao L C and Liu J 2013 Phys. Rev. E 87 013201
|
[20] |
Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150
|
[21] |
Cornish S L, Thompson S T and Wieman C E 2006 Phys. Rev. Lett. 96 170401
|
[22] |
Abdullaev F Kh, Kamchatnov A M, Konotop V V and Brazhnyi V A 2003 Phys. Rev. Lett. 90 230402
|
[23] |
Wang Y S, Yan P G, Li B and Liu X S 2012 Chin. Phys. B 21 010309
|
[24] |
Yan P G, Wang Y S, Ji S T and Liu X S 2012 Phys. Lett. A 376 3141
|
[25] |
Yan P G, Ji S T and Liu X S 2013 Phys. Lett. A 377 878
|
[26] |
Kevrekidis P G, Theocharis G, Frantzeskakis D J and Malomed B A 2003 Phys. Rev. Lett. 90 230401
|
[27] |
Zhang X F, Hu X H, Liu X X and Liu W M 2009 Phys. Rev. A 79 033630
|
[28] |
Matuszewski M, Alexander T J and Kivshar Y S 2009 Phys. Rev. A 80 012602
|
[29] |
Song S W, Wang D S, Wang H and Liu W M 2012 Phys. Rev. A 85 063617
|
[30] |
Hai W, Lee C and Chong G 2004 Phys. Rev. A 70 053621
|
[31] |
Matuszewski M 2010 Phys. Rev. A 82 053630
|
[32] |
Bao W, Jaksch D and Markovich P A 2003 J. Comput. Phys. 187 318
|
[33] |
Bao W and Zhang Y 2005 Math. Models Meth. Appl. Sci. 15 1863
|
[34] |
Hua W, Li B and Liu X S 2011 Chin. Phys. B 20 060308
|
[35] |
Zhao L C, Yang Z Y, Ling L M and Liu J 2011 Phys. Lett. A 375 1839
|
[36] |
Baronio F, Degasperis A, Conforti M and Wabnitz S 2012 Phys. Rev. Lett. 109 044102
|
[37] |
Nistazakis H E, Frantzeskakis D J, Kevrekidis P G, Malomed B A, Carretero-González R and Bishop A R 2007 Phys. Rev. A 76 063603
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|