Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 010308    DOI: 10.1088/1674-1056/28/1/010308
GENERAL Prev   Next  

Ground-state vortex structures of a rotating binary dipolar Bose-Einstein condensate confined in harmonic plus quartic potential

Guang-Ping Chen(陈光平)1, Chang-Bing Qiao(乔昌兵)2, Hui Guo(郭慧)3,4, Lin-Xue Wang(王林雪)3,4, Ya-Jun Wang(王雅君)3,4, Ren-Bing Tan(谭仁兵)5
1 School of Intelligent Manufacturing, Sichuan Art and Science University, Dazhou 635000, China;
2 School of Chemistry and Chemical Engineering, Sichuan Art and Science University, Dazhou 635000, China;
3 Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China;
4 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China;
5 College of Mathematics and Physics, Chongqing University of Science and Technology, Chongqing 401331, China
Abstract  

We consider a binary dipolar Bose-Einstein condensate confined in a rotating harmonic plus quartic potential trap. The ground-state vortex structures are numerically obtained as a function of the contact interactions and the dipole-dipole interaction in both slow and rapid rotation cases. The results show that the vortex configurations depend strongly on the strength of the contact interactions, the relative strength between dipolar and contact interactions, as well as on the orientation of the dipoles. A variety of exotic ground-state vortex structures, such as pentagonal and hexagon vortex lattice, square vortex lattice with a central vortex, annular vortex lines, and straight vortex lines, are observed by turning such controllable parameters. Our results deepen the understanding of effects of dipole-dipole interaction on the topological defects.

Keywords:  Bose-Einstein condensate      dipolar-dipolar interaction      harmonic plus quartic potential trap      vortex structure  
Received:  26 June 2018      Revised:  08 November 2018      Accepted manuscript online: 
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  03.75.Mn (Multicomponent condensates; spinor condensates)  
  05.30.Jp (Boson systems)  
Fund: 

Project supported by the Sichuan Province Education Department Key Natural Science Fund, China (Grant No. 17ZA339), the Chongqing Research Program of Basic Research and Frontier Technology, China (Grant No. cstc2014jcyjA50016), and the National Natural Science Foundation of China (Grant No. 61504016).

Corresponding Authors:  Guang-Ping Chen     E-mail:  chengp205@126.com

Cite this article: 

Guang-Ping Chen(陈光平), Chang-Bing Qiao(乔昌兵), Hui Guo(郭慧), Lin-Xue Wang(王林雪), Ya-Jun Wang(王雅君), Ren-Bing Tan(谭仁兵) Ground-state vortex structures of a rotating binary dipolar Bose-Einstein condensate confined in harmonic plus quartic potential 2019 Chin. Phys. B 28 010308

[1] Fetter A L 2009 Rev. Mod. Phys. 81 647
[2] Abo-Shaeer J R, Raman C, Vogels J M and Ketterle W 2001 Science 292 476
[3] Khawaja U A and Stoof H 2001 Nature 411 918
[4] Mühlbauer S, Binz B, Jonietz F, Pfleiderer C and Rosch A 2009 Science 323 915
[5] Mizushima T, Machida K and Kita T 2002 Phys. Rev. Lett. 89 030401
[6] Kasamatsu K, Tsubota M and Ueda M 2004 Phys. Rev. Lett. 93 250406
[7] Bulgakov E N and Sadreev A F 2003 Phys. Rev. Lett. 90 200401
[8] Li Y E and Xue J K 2016 Chin. Phys. Lett. 33 100502
[9] Liu X W and Zhang K Y 2017 Acta Phys. Sin. 66 160301 (in Chinese)
[10] Xu T F, Zhang Y F, Xu L C and Li Z D 2017 Chin. Phys. B 26 100304
[11] Zhang H F, Chen F, Yu C C, Sun L H and Xu D H 2017 Chin. Phys. B 26 080304
[12] Griesmaier A, Werner J, Hensler S, Stuhler J and Pfau T 2005 Phys. Rev. Lett. 94 160401
[13] Stuhler J, Koch A T, Fattori M, Pfau T, Giovanazzi S, Pedri P and Santos L 2005 Phys. Rev. Lett. 95 150406
[14] Lahaye T, Koch T, Frohlich B, Fattori M, Metz J, Griesmaier A, Giovanazzi S and Pfau T 2007 Nature 448 672
[15] Lahaye T, Menotti C, Santos L, Lewenstein M L and Pfau T 2009 Rep. Prog. Phys. 72 126401
[16] Kawaguchi Y, Saito H and Ueda M 2006 Phys. Rev. Lett. 96 080405
[17] Zhang X F, Han W, Jiang H F, Saito H and Zhang S G 2016 Ann. Phys. 375 368
[18] Góral K, Rzążewski K and Pfau T 2000 Phys. Rev. A 61 051601
[19] Dong B, Sun Q, Liu W M, Ji A C, Zhang X F and Zhang S G 2017 Phys. Rev. A 96 013619
[20] Góral K, Santos L and Lewenstein M 2002 Phys. Rev. Lett. 88 170406
[21] Vengalattore M, Leslie S R, Guzman J and Stamper-Kurn D M 2008 Phys. Rev. Lett. 100 170403
[22] Chotia A, Neyehuis B, Steven A M, Yan B, Covey J P, Foss-Feig M, Rey A M, Jin D S and Ye J 2012 Phys. Rev. Lett. 108 080405
[23] Wang L X, Dong B, Chen G P, Han W, Zhang S G, Shi Y R and Zhang X F 2016 Phys. Lett. A 380 435
[24] Abad M, Guilleumas M, Mayol R, Pi M and Jezek D M 2010 Phys. Rev. A 81 043619
[25] Zhang X F, Zhang P, Chen G P, Dong B, Tan R B and Zhang S G 2015 Acta Phys. Sin. 64 060302 (in Chinese)
[26] Zhang X F, Han W, Wen L, Zhang P, Dong R F, Chang H and Zhang S G 2015 Sci. Rep. 5 08684
[27] Cozzini M, Jackson B and Stringari S 2006 Phys. Rev. A 73 013603
[28] Hsueh C H, Horng T L, Gou S C and Wu W C 2011 Phys. Rev. A 84 023610
[29] Liu Y and Zhang S Y 2016 Chin. Phys. B 25 090304
[30] Wang H, Wen L H, Yang H, Shi C X and Li J H 2017 J. Phys. B: At. Mol. Opt. Phys. 50 155301
[31] Zhang X F, Wen L, Dai C Q, Dong R F, Jiang H F, Chang H and Zhang S G 2016 Sci. Rep. 6 19380
[32] Zhang Y P, Mao L and Zhang C W 2012 Phys. Rev. Lett. 108 035302
[33] Bao, W Z, Cai Y Y and Wang H Q 2010 J. Comput. Phys. 229 7874
[1] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[2] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[3] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[4] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[5] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[6] Spin current in a spinor Bose-Einstein condensate induced by a gradient magnetic field
Li Tian(田丽), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(11): 110302.
[7] Dynamics of bright soliton in a spin-orbit coupled spin-1 Bose-Einstein condensate
Hui Guo(郭慧), Xu Qiu(邱旭), Yan Ma(马燕), Hai-Feng Jiang(姜海峰), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2021, 30(6): 060310.
[8] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[9] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[10] Quantum reflection of a Bose-Einstein condensate with a dark soliton from a step potential
Dong-Mei Wang(王冬梅), Jian-Chong Xing(邢健崇), Rong Du(杜荣), Bo Xiong(熊波), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(12): 120303.
[11] Merging and splitting dynamics between two bright solitons in dipolar Bose-Einstein condensates
Xin Li(李欣), Peng Gao(高鹏), Zhan-Ying Yang(杨战营), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(12): 120501.
[12] Nonlinear dynamical stability of gap solitons in Bose-Einstein condensate loaded in a deformed honeycomb optical lattice
Hongjuan Meng(蒙红娟), Yushan Zhou(周玉珊), Xueping Ren(任雪平), Xiaohuan Wan(万晓欢), Juan Zhang(张娟), Jing Wang(王静), Xiaobei Fan(樊小贝), Wenyuan Wang(王文元), and Yuren Shi(石玉仁). Chin. Phys. B, 2021, 30(12): 126701.
[13] Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates
Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(11): 110312.
[14] Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling
Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Han-Zhao Tang(唐翰昭), and Ya-Fei Song(宋亚飞). Chin. Phys. B, 2021, 30(10): 106701.
[15] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
No Suggested Reading articles found!