Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 070302    DOI: 10.1088/1674-1056/28/7/070302
GENERAL Prev   Next  

SU(3) spin-orbit-coupled Bose-Einstein condensate confined in a harmonic plus quartic trap

Hao Li(李昊)1, Fanglin Chen(陈方林)2
1 School of Mechanical and Electrical Engineering and Information Engineering, University of Mining and Technology, Beijing 100083, China;
2 College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
Abstract  

We consider a SU(3) spin-orbit coupled Bose-Einstein condensate confined in a harmonic plus quartic trap. The ground-state wave functions of such a system are obtained by minimizing the Gross-Pitaevskii energy functional, and the effects of the spin-dependent interaction and spin-orbit coupling are investigated in detail. For the case of ferromagnetic spin interaction, the SU(3) spin-orbit coupling induces a threefold-degenerate plane wave ground state with nontrivial spin texture. For the case of antiferromagnetic spin interaction, the system shows phase separation for weak SU(3) spin-orbit coupling, where three discrete minima with unequal weights in momentum space are selected, while hexagonal honeycomb lattice structure for strong SU(3) SOC, where three discrete minima with equal weights are selected.

Keywords:  Bose-Einstein condensate      SU(3) spin-orbit coupling      Gross-Pitaevskii equation  
Received:  13 June 2019      Accepted manuscript online: 
PACS:  03.75.Mn (Multicomponent condensates; spinor condensates)  
  05.45.Yv (Solitons)  
  05.30.Jp (Boson systems)  
  05.30.Rt (Quantum phase transitions)  
Corresponding Authors:  Fanglin Chen     E-mail:  fanglin-4444@163.com

Cite this article: 

Hao Li(李昊), Fanglin Chen(陈方林) SU(3) spin-orbit-coupled Bose-Einstein condensate confined in a harmonic plus quartic trap 2019 Chin. Phys. B 28 070302

[33] Chen G P, Chen S L, Xie Z W, Zhang X F and Zhang S G 2016 Commun. Theor. Phys. 66 53
[1] Pethick C J and Smith H 2008 Bose-Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press)
[34] Wu C, Mondragon-Shem I and Zhou X F 2011 Chin. Phys. Lett. 28 097102
[35] Sinha S, Nath R and Santos L 2011 Phys. Rev. Lett. 107 270401
[2] Ueda M 2010 Fundamentals and New Frontiers of Bose-Einstein Condensation (Singapore: World Scientific Press)
[36] Kawakami T, Mizushima T, Nitta M and Machida K 2012 Phys. Rev. Lett. 109 015301
[3] Lin Y J, Compton R L, Jiménez-García K, Porto J V, and Spielman I B 2009 Nature 462 628
[37] Achilleos V, Frantzeskakis D J, Kevrekidis P G and Pelinovsky D E 2013 Phys. Rev. Lett. 110 264101
[4] Fu Z, Huang L, Meng Z, Wang P, Zhang L, Zhang S, Zhai H, Zhang P and Zhang J 2014 Nat. Phys. 10 110
[38] Lobanov V E, Kartashov Y V and Konotop V V 2014 Phys. Rev. Lett. 112 180403
[5] Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
[39] Zhang Y, Zhou Z, Malomed B A and Pu H 2015 Phys. Rev. Lett. 115 253902
[6] Lin Y J, Compton R L, Jiménez-García K, Phillips W D, Porto J V and Spielman I B 2011 Nat. Phys. 7 531
[40] Sakaguchi H and Malomed B A 2014 Phys. Rev. E 90 062922
[7] Wang C, Gao C, Jian C M and Zhai H 2010 Phys. Rev. Lett. 105 160403
[41] Sakaguchi H and Malomed B A 2016 New J. Phys. 18 025020
[8] Ho T L and Zhang S 2011 Phys. Rev. Lett. 107 150403
[42] Kartashov Y V and Konotop V V 2017 Phys. Rev. Lett. 118 190401
[9] Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301
[43] Gra? T, Chhajlany R W, Muschik C A and Lewenstein M 2014 Phys. Rev. B 90 195127
[10] Anderson B M, Juzeliūnas G, Galitski V M and Spielman I B 2012 Phys. Rev. Lett. 108 235301
[44] Barnett R, Boyd G R and Galitski V 2012 Phys. Rev. Lett. 109 235308
[11] Huang L, Meng Z, Wang P, Peng P, Zhang S L, Chen L, Li D, Zhou Q and Zhang J 2016 Nat. Phys. 12 540
[45] Bornheimer U, Miniatura C and Grémaud B 2018 Phys. Rev. A 98 043614
[12] Meng Z M, Huang L H, Peng P, Li D H, Chen L C, Xu Y, Zhang C, Wang P and Zhang J 2016 Phys. Rev. Lett. 117 235304
[46] Han W, Zhang X F, Song S W, Saito H, Zhang W, Liu W M and Zhang S G 2016 Phys. Rev. A 94 033629
[13] Ji S C, Zhang J Y, Zhang L, Du Z D, Zheng W, Deng Y J, Zhai H, Chen S and Pan J W 2014 Nat. Phys. 10 314
[47] Kawaguchi Y and Ueda M 2012 Phys. Rep. 520 253
[14] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J and Pan J W 2016 Science 354 83
[48] Stamper-Kurn D M and Ueda M 2013 Rev. Mod. Phys. 85 1191
[15] Li Y E and Xue J K 2016 Chin. Phys. Lett. 33 100502
[49] Arfken G B, Weber H J and Harris F E 2000 Mathematical Methods for Physicists (Elsevier: Academic Press)
[16] Li J and Liu W M 2018 Acta Phys. Sin. 67 110302 (in Chinese)
[50] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1992 Numerical Recipes in Fortran 77 (Cambridge: Cambridge University Press)
[17] Yu Z Q and He L 2017 Acta Phys. Sin. 66 220301 (in Chinese)
[51] Bao W Z, Jaksch D and Markowich P 2003 J. Comput. Phys. 187 318
[18] Zhang H, Chen F, Yu C, Sun L and Xu D 2017 Chin. Phys. B 26 080304
[52] Zhang Y, Mao L and Zhang C 2012 Phys. Rev. Lett. 108 035302
[19] Wen L, Sun Q, Chen Y, Wang D S, Hu J, Chen H, Liu W M, Juzeliūnas G, Malomed B A and Ji A C 2016 Phys. Rev. A 94 061602
[53] Wen L, Sun Q, Wang H Q, Ji A C and Liu W M 2012 Phys. Rev. A 86 043602
[20] Wen L, Zhang X F, Hu A Y, Zhou J, Yu P, Xia L, Sun Q and Ji A C 2018 Anns. Phys. 390 181
[21] Dalibard J, Gerbier F, Juzeliūnas F and Öhberg P 2011 Rev. Mod. Phys. 83 1523
[22] Goldman N, Juzeliūnas G, Öhberg P and Spielman I B 2014 Rep. Prog. Phys. 77 126401
[23] Zhai H 2015 Rep. Prog. Phys. 78 026001
[24] Hu H, Ramachandhran B, Pu H and Liu X J 2012 Phys. Rev. Lett. 108 010402
[25] Zhang X F, Dong D F, Liu T, Liu W M and Zhang S G 2012 Phys. Rev. A 86 063628
[26] Zhang X F, Kato M, Han W, Zhang S G and Saito H 2017 Phys. Rev. A 95 033620
[27] Sinha S and Shlyapnikov G V 2005 Phys. Rev. Lett. 94 150401
[28] Sánchez-Lotero P and Palacios J J 2005 Phys. Rev. A 72 043613
[29] Matveenko S I, Kovrizhin D, Ouvry S and Shlyapnikov G V 2009 Phys. Rev. A 80 063621
[30] Huang C C, Liu C H and Wu W C 2010 Phys. Rev. A 81 043605
[31] Hsueh C H, Horng T L, Gou S C and Wu W C 2011 Phys. Rev. A 84 023610
[32] Chen G P, Zhang Z Y, Dong B, Wang L X, Zhang X F and Zhang S G 2015 Phys. Lett. A 379 2193
[33] Chen G P, Chen S L, Xie Z W, Zhang X F and Zhang S G 2016 Commun. Theor. Phys. 66 53
[34] Wu C, Mondragon-Shem I and Zhou X F 2011 Chin. Phys. Lett. 28 097102
[35] Sinha S, Nath R and Santos L 2011 Phys. Rev. Lett. 107 270401
[36] Kawakami T, Mizushima T, Nitta M and Machida K 2012 Phys. Rev. Lett. 109 015301
[37] Achilleos V, Frantzeskakis D J, Kevrekidis P G and Pelinovsky D E 2013 Phys. Rev. Lett. 110 264101
[38] Lobanov V E, Kartashov Y V and Konotop V V 2014 Phys. Rev. Lett. 112 180403
[39] Zhang Y, Zhou Z, Malomed B A and Pu H 2015 Phys. Rev. Lett. 115 253902
[40] Sakaguchi H and Malomed B A 2014 Phys. Rev. E 90 062922
[41] Sakaguchi H and Malomed B A 2016 New J. Phys. 18 025020
[42] Kartashov Y V and Konotop V V 2017 Phys. Rev. Lett. 118 190401
[43] Gra? T, Chhajlany R W, Muschik C A and Lewenstein M 2014 Phys. Rev. B 90 195127
[44] Barnett R, Boyd G R and Galitski V 2012 Phys. Rev. Lett. 109 235308
[45] Bornheimer U, Miniatura C and Grémaud B 2018 Phys. Rev. A 98 043614
[46] Han W, Zhang X F, Song S W, Saito H, Zhang W, Liu W M and Zhang S G 2016 Phys. Rev. A 94 033629
[47] Kawaguchi Y and Ueda M 2012 Phys. Rep. 520 253
[48] Stamper-Kurn D M and Ueda M 2013 Rev. Mod. Phys. 85 1191
[49] Arfken G B, Weber H J and Harris F E 2000 Mathematical Methods for Physicists (Elsevier: Academic Press)
[50] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1992 Numerical Recipes in Fortran 77 (Cambridge: Cambridge University Press)
[51] Bao W Z, Jaksch D and Markowich P 2003 J. Comput. Phys. 187 318
[52] Zhang Y, Mao L and Zhang C 2012 Phys. Rev. Lett. 108 035302
[53] Wen L, Sun Q, Wang H Q, Ji A C and Liu W M 2012 Phys. Rev. A 86 043602
[1] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[2] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[3] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[4] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[5] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[6] Spin current in a spinor Bose-Einstein condensate induced by a gradient magnetic field
Li Tian(田丽), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(11): 110302.
[7] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[8] Bose-Einstein condensates under a non-Hermitian spin-orbit coupling
Hao-Wei Li(李浩伟) and Jia-Zheng Sun(孙佳政). Chin. Phys. B, 2021, 30(6): 066702.
[9] Dynamics of bright soliton in a spin-orbit coupled spin-1 Bose-Einstein condensate
Hui Guo(郭慧), Xu Qiu(邱旭), Yan Ma(马燕), Hai-Feng Jiang(姜海峰), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2021, 30(6): 060310.
[10] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[11] A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲). Chin. Phys. B, 2021, 30(2): 020202.
[12] Quantum reflection of a Bose-Einstein condensate with a dark soliton from a step potential
Dong-Mei Wang(王冬梅), Jian-Chong Xing(邢健崇), Rong Du(杜荣), Bo Xiong(熊波), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(12): 120303.
[13] Merging and splitting dynamics between two bright solitons in dipolar Bose-Einstein condensates
Xin Li(李欣), Peng Gao(高鹏), Zhan-Ying Yang(杨战营), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(12): 120501.
[14] Nonlinear dynamical stability of gap solitons in Bose-Einstein condensate loaded in a deformed honeycomb optical lattice
Hongjuan Meng(蒙红娟), Yushan Zhou(周玉珊), Xueping Ren(任雪平), Xiaohuan Wan(万晓欢), Juan Zhang(张娟), Jing Wang(王静), Xiaobei Fan(樊小贝), Wenyuan Wang(王文元), and Yuren Shi(石玉仁). Chin. Phys. B, 2021, 30(12): 126701.
[15] Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates
Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(11): 110312.
No Suggested Reading articles found!