|
|
Collapses-revivals phenomena induced by weak magnetic flux in diamond chain |
Na-Na Chang(常娜娜)1, Wen-Quan Jing(景文泉)2, Yu Zhang(张钰)1, Ai-Xia Zhang(张爱霞)2, Ju-Kui Xue(薛具奎)2, Su-Peng Kou(寇谡鹏)1 |
1 Department of Physics, Beijing Normal University, Beijing 100875, China; 2 College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China |
|
|
Abstract We investigate the quantum dynamical behaviors of bosons in a diamond chain with weak magnetic flux (WMF), including Landau-Zener tunnelling, Bloch oscillations, localization phenomenon, and collapses-revivals phenomena. We observed that collapses-revivals phenomena can occur in diamond chain with WMF and cannot exist in the strong magnetic flux case as the previous study (Chang N N and Xue J K, 2018, Chin. Phys. B 27 105203). Induced by WMF, the energy band for the system varies from gapless to gapped structure. The position of the extrema of probability amplitude for ground state can also be altered by WMF within a single diamond plaquette. As a consequence, the transitions between different dynamical behaviors of bosons in diamond chain can be manipulated by WMF, depending on its initial configurations.
|
Received: 19 August 2019
Revised: 13 November 2019
Accepted manuscript online:
|
PACS:
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
05.30.Jp
|
(Boson systems)
|
|
03.75.Mn
|
(Multicomponent condensates; spinor condensates)
|
|
67.85.Hj
|
(Bose-Einstein condensates in optical potentials)
|
|
Fund: Project supported the National Natural Science Foundation of China (Grant Nos. 11974053, 11674026, 11274255, 11305132, and 11475027) and China Scholarship Council (CSC). |
Corresponding Authors:
Na-Na Chang, Su-Peng Kou
E-mail: nnchangqq@gmail.com;spkou@bnu.edu.cn
|
Cite this article:
Na-Na Chang(常娜娜), Wen-Quan Jing(景文泉), Yu Zhang(张钰), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎), Su-Peng Kou(寇谡鹏) Collapses-revivals phenomena induced by weak magnetic flux in diamond chain 2020 Chin. Phys. B 29 010306
|
[1] |
Anderson M H, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
|
[2] |
Schmitt J, Damn T, Dung D, Vewinger F, Klaers J and Weitz M 2014 Phys. Rev. Lett. 112 030401
|
[3] |
Trombettoni A and Smerzi A 2001 Phys. Rev. Lett. 86 2353
|
[4] |
Cazalilla M A, Citro R, Giamarchi T, Orignac E and Rigol M 2011 Rev. Mod. Phys. 83 1405
|
[5] |
Chang N N and Xue J K 2018 Chin. Phys. B 27 105203
|
[6] |
Khomeriki R and Flach S 2016 Phys. Rev. Lett. 116 245301
|
[7] |
Guláacsi Z, Kampf A and Vollhardt D 2007 Phys. Rev. Lett. 99 026404
|
[8] |
Mikeska H J and Luckmann C 2008 Phys. Rev. B 77 054405
|
[9] |
Kobayashi K, Okumura M, Yamada S, Machida M and Aoki H 2016 Phys. Rev. B 94 214501
|
[10] |
Dalibard J, Gerbier F, Juzeliunas G, et al. 2011 Rev. Mod. Phys. 83 1523
|
[11] |
Gerbier F and Dalibard J 2010 New J. Phys. 12 033007
|
[12] |
Zhang X, Yu Z F and Xue J K 2016 Chin. Phys. Lett. 33 40302
|
[13] |
Zhou W Y, Wu Y J and Kou S P 2018 Chin. Phys. B 27 050302
|
[14] |
Dodaro J F, Kivelson S A, Schattner Y, et al. 2018 Phys. Rev. B 98 075154
|
[15] |
Wang Y F, Gu Z C, Gong C D and Sheng D N 2011 Phys. Rev. Lett. 107 146803
|
[16] |
Wen J, Kargarian M, Vaezi A, et al. 2011 Phys. Rev. B 84 235149
|
[17] |
Du L, Chen Q, Barr A D, et al. 2018 Phys. Rev. B 98 245145
|
[18] |
Creffield C E, Pieplow G, Sols F, et al. 2016 New J. Phys. 18 093013
|
[19] |
Aidelsburger M, Atala M, Lohse M, Barreiro J T, Paredes B and Bloch I 2013 Phys. Rev. Lett. 111 185301
|
[20] |
Cartwright C, Chiara G D and Rizzi M 2018 Phys. Rev. B 98 184508
|
[21] |
Bouwmeester D, Dekker N H, Dorsselaer F E V, Schrama C A, Visser P M and Woerdman J P 1995 Phys. Rev. A 51 646
|
[22] |
Yan J Y, Duan S Q, Zhang W and Zhao X G 2009 Phys. Rev. A 79 053613
|
[23] |
Niu Q and Raizen M G 1998 Phys. Rev. Lett. 80 3491
|
[24] |
Loladze V and Khomeriki R 2017 Phys. Rev. E 95 042204
|
[25] |
Longhi S and Valle G D 2012 Phys. Rev. A 86 043633
|
[26] |
Flach S, Leykam D, Bodyfelt J D, Matthies P and Desyatnikov A S 2014 Europhys. Lett. 105 30001
|
[27] |
Huber S D and Altman E 2010 Phys. Rev. B 82 184502
|
[28] |
Aoki H, Ando M and Matsumura H 1996 Phys. Rev. B 54 17296
|
[29] |
Bilitewski T and Moessner R 2018 Phys. Rev. B 98 235109
|
[30] |
Chang N N, Yu Z F, Zhang A X and Xue J K 2017 Chin. Phys. B 26 115202
|
[31] |
Vicencio R A, Cantillano C, Inostroza L M, Real B, Cortés C M, Weimann S, Szameit A and Molina M I 2015 Phys. Rev. Lett. 114 245503
|
[32] |
Real B and Vicencio R A 2018 Phys. Rev. A 98 053845
|
[33] |
Kimura T, Tamura H, Shiraishi V and Takayanagi H 2002 Phys. Rev. B 65 081307
|
[34] |
Gligorić G, Maluckov A, Hadžievski Lj, Flach S and Malomed B A 2016 Phys. Rev. B 94 144302
|
[35] |
Johansson M, Naether U and Vicencio R A 2015 Phys. Rev. E 92 032912
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|