Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 028103    DOI: 10.1088/1674-1056/23/2/028103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Transparent conductive graphene films prepared by hydroiodic acid and thermal reduction

Qin Meng-Meng (秦盟盟), Ji Wei (纪伟), Feng Yi-Yu (冯奕钰), Feng Wei (封伟)
School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
Abstract  Transparent conductive graphene films are fabricated by the transfer printing of graphene aqueous dispersion followed by hydrohalic acids and thermal reduction. Results indicate that the graphene film reduced by hydroiodic acid (HI) reduction combined with thermal treatment shows a higher electrical conductivity than that reduced only by thermal treatment at the same transparency. A film with a sheet resistance of ~2400 Ω/sq at a transparency over 72% is obtained at a typical wavelength of 550 nm.
Keywords:  graphene      hydroiodic acid      thermal reduction      sheet resistance  
Received:  31 March 2013      Revised:  29 May 2013      Accepted manuscript online: 
PACS:  81.05.ue (Graphene)  
  81.05.U- (Carbon/carbon-based materials)  
  68.65.Pq (Graphene films)  
Fund: Project supported by the National Key Basic Research Program of China (Grant Nos. 2012CB626800 and 2010CB934700) and the National Natural Science Foundation of China (Grant Nos. 51073115, 51003072, 51173127, and 51273144).
Corresponding Authors:  Feng Wei     E-mail:  weifeng@tju.edu.cn
About author:  81.05.ue; 81.05.U-; 68.65.Pq

Cite this article: 

Qin Meng-Meng (秦盟盟), Ji Wei (纪伟), Feng Yi-Yu (冯奕钰), Feng Wei (封伟) Transparent conductive graphene films prepared by hydroiodic acid and thermal reduction 2014 Chin. Phys. B 23 028103

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H B, Evmenenko G, Nguyen S T and Ruoff R S 2007 Nature 448 457
[3] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes, Jia Y Y, Wu Y, Nguyen S T and Ruoff R S 2007 Carbon 45 1558
[4] Wang D W, Li F, Zhao J P, Ren W C, Chen Z G, Tan J, Wu Z S, Gentle L, Lu G Q and Cheng H M 2009 ACS Nano 3 1745
[5] Becerril H A, Mao J, Liu Z F, Stoltenberg R M, Bao Z N and Chen Y S 2008 ACS Nano 2 463
[6] Shin H J, Kim K K, Benayad A, Yoon S M, Park H K, Jung I S, Jin M H, Jeony H K, Kim J K, Choi J Y and Lee Y H 2009 Adv. Funct. Mater. 19 1987
[7] Cote L J, Kim F and Huang J X 2009 J. Am. Chem. Soc. 131 1043
[8] Mkhoyan K A, Contryman A W, Silcox J, Stewart D A, Eda G, Mattevi C, Miller S and Chhowalla M 2009 Nano Lett. 9 1058
[9] Wang H L, Robinson J T, Li X L and Dai H J 2009 J. Am. Chem. Soc. 131 9910
[10] Chen J Y, Zhang H L, Huang L P, Wu B, Wei D C and Liu Y Q 2009 Physics 38 387 (in Chinese)
[11] Wang X, Zhi L J and Mullen K 2008 Nano Lett. 8 323
[12] Fan X B, Peng W C, Li Y, Li X Y, Wang S L, Zhang G L and Zhang F B 2008 Adv. Mater. 20 4490
[13] Pei S F, Zhao J P, Du J H, Ren W C and Cheng H M 2010 Carbon 48 4466
[14] Song L, Khoerunnisa F, Gao W, Dou W H, Hayashi T, Kaneko K, Endo M and Ajayan P M 2013 Carbon 52 608
[15] Wang S J, Geng Y, Zheng Q B and Kim J K 2010 Carbon 48 1815
[16] Zheng Q B, Ip W H, Lin X Y, Yousefi N, Yeung K K, Li Z G and Kim J K 2011 ACS Nano 5 6039
[17] Zhao J P, Pei S F, Ren W C, Gao L B and Cheng H M 2010 ACS Nano 4 5245
[18] Chen W F, Yan L F and Bangal P R 2010 Carbon 48 1146
[19] Tang L H, Feng H B, Cheng J S and Li J H 2010 Chem. Commun. 46 5882
[20] Yu A P, Rose I, Davies A and Chen Z W 2010 Appl. Phys. Lett. 96 253105
[21] Zhao B, Liu P, Jiang Y, Pan D Y, Tao H H, Song J S, Fang T and Xu W W 2012 J. Power Sources 198 423
[22] Pimenta M A, Dresselhaus G, Dresselhaus M S, Cancado L G, Jorio A and Saito R 2007 Phys. Chem. Chem. Phys. 9 1276
[23] Lee V, Whittaker L, Jayer C, Baroudi K M, Fischer D A and Banerjee S 2009 Chem. Mater. 21 3905
[24] Ganguly A, Sharma S, Papakonstantinou P and Hamilton J 2011 J. Phys. Chem. C 115 17009
[25] Wang X, Zhi L J, Tsao N, Tomovic Z, Li J L and Mullen K 2008 Angew. Chem. Int. Ed. 47 2990
[26] Li X L, Zhang G Y, Bai X D, Sun X M, Wang X R, Wang E and Dai H J 2008 Nat. Nanotechnol. 3 538
[27] Yamaguchi H, Eda G, Mattevi C, Kim H and Chhowalla M 2010 ACS Nano 4 524
[28] Kim U J, Liu X M, Furtado C A, Chen G, Saito R, Jiang J, Dresselhaus M S and Eklund P C 2005 Phys. Rev. Lett. 95 157402
[29] Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N and Heer W A 2006 Science 312 1191
[30] Zhi L J, Wu J S, Li J, Kolb U and Mullen K 2005 Angew. Chem. Int. Ed. 44 2120
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[7] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[8] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[9] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[10] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[13] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[14] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
[15] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
No Suggested Reading articles found!