INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Controlled construction of nanostructures in graphene |
Li Zhong-Jun (李忠军), Li Qiang (李强), Cheng Zeng-Guang (程增光), Li Hong-Bian (李红变), Fang Ying (方英) |
National Center for Nanoscience and Technology, Beijing 100190, China |
|
|
Abstract We report on the laser-assisted fabrications of nanostructures in graphene membranes supported on polymer films. By using a laser beam to deposit heat locally, irradiated polymer instantaneously melts and vaporizes. During laser drilling of the polymer, the single-layer graphene membrane adheres to the polymer surface and consequently forms tens of nanometer deep wells. Due to the short time scale of laser irradiation, heat diffusion in the polymer is negligible, and the excitation energy is highly confined in the polymer. As a result, graphene nanowells of hundreds of nanometers in diameter can be patterned with high fidelity. With the increasing of nanowell density, we observe the spontaneous formation of nanowrinkles connecting pairs of nanowells in the graphene membranes. Importantly, Raman spectra confirm that no defects are introduced in graphene membranes by laser irradiation under our experimental conditions. Our results highlight the possibility to construct nanostructures and to design novel devices based on graphene.
|
Received: 04 May 2013
Revised: 05 August 2013
Accepted manuscript online:
|
PACS:
|
81.05.ue
|
(Graphene)
|
|
61.48.Gh
|
(Structure of graphene)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21173055 and 21161120321). |
Corresponding Authors:
Fang Ying
E-mail: fangy@nanoctr.cn
|
About author: 81.05.ue; 61.48.Gh |
Cite this article:
Li Zhong-Jun (李忠军), Li Qiang (李强), Cheng Zeng-Guang (程增光), Li Hong-Bian (李红变), Fang Ying (方英) Controlled construction of nanostructures in graphene 2014 Chin. Phys. B 23 028102
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Du X, Skachko I, Barker A and Andrei E Y 2008 Nat. Nanotechnol. 3 491
|
[3] |
Miller D L, Kubista K D, Rutter G M, Ruan M, de Heer W A, First P N and Stroscio J A 2009 Science 324 924
|
[4] |
Lee C, Wei X D, Kysar J W and Hone J 2008 Science 321 385
|
[5] |
Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
|
[6] |
Ramanathan T, Abdala A A, Stankovich S, Dikin D A, Herrera-Alonso M, Piner R D, Adamson D H, Schniepp H C, Chen X, Ruoff R S, Nguyen S T, Aksay I A, Prud’homme R K and Brinson L C 2008 Nat. Nanotechnol. 3 327
|
[7] |
Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T and Ruoff R S 2006 Nature 442 282
|
[8] |
Wang X, Zhi L J and Mullen K 2008 Nano Lett. 8 323
|
[9] |
Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
|
[10] |
Zhao J, Zhang G Y and Shi D X 2013 Chin. Phys. B 22 057701
|
[11] |
Ouyang F P, Peng S L, Zhang H, Weng L B and Xu H 2011 Chin. Phys. B 20 058504
|
[12] |
Li P J, Chen K, Chen Y F, Wang Z G, Hao X, Liu J B, He J R and Zhang W L 2012 Chin. Phys. B 21 118101
|
[13] |
Cheng Z G, Li Q, Li Z J, Zhou Q Y and Fang Y 2010 Nano Lett. 10 1864
|
[14] |
Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722
|
[15] |
Jiao L Y, Zhang L, Wang X R, Diankov G and Dai H J 2009 Nature 458 877
|
[16] |
Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
|
[17] |
Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S and Geim A K 2008 Science 320 356
|
[18] |
Sols F, Guinea F and Neto A H C 2007 Phys. Rev. Lett. 99 166803
|
[19] |
Mucciolo E R, Neto A H C and Lewenkopf C H 2009 Phys. Rev. B 79 075407
|
[20] |
Shi Z W, Yang R, Zhang L C, Wang Y, Liu D H, Shi D X, Wang E G and Zhang G Y 2011 Adv. Mater. 23 3061
|
[21] |
Pereira V M and Neto A H C 2009 Phys. Rev. Lett. 103 046801
|
[22] |
Sun J T, Du S X, Xiao W D, Hu H, Zhang Y Y, Li G and Gao H J 2009 Chin. Phys. B 18 3008
|
[23] |
Yang H T 2011 J. Phys.: Condens. Matter 23 505502
|
[24] |
Yang M, Cui Y, Wang R Q and Zhao H B 2012 J. Appl. Phys. 112 073710
|
[25] |
Guinea F, Katsnelson M I and Geim A K 2010 Nat. Phys. 6 30
|
[26] |
Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Ponomarenko L A, Jiang D and Geim A K 2006 Phys. Rev. Lett. 97 016801
|
[27] |
Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[28] |
Gui G, Li J and Zhong J X 2008 Phys. Rev. B 78 075435
|
[29] |
Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Neto A H C and Crommie M F 2010 Science 329 544
|
[30] |
Xu K, Cao P and Heath J R 2009 Nano Lett. 9 4446
|
[31] |
Wang Y, Yang R, Shi Z W, Zhang L C, Shi D X, Wang E G and Zhang G Y 2011 ACS Nano 5 3645
|
[32] |
Zhu W, Low T, Perebeinos V, Bol A A, Zhu Y, Yan H, Tersoff J and Avouris P 2012 Nano Lett. 12 3431
|
[33] |
Guo Y F and Guo W L 2013 J. Phys. Chem. C 117 692
|
[34] |
Guo Y F and Guo W L 2013 Nanoscale 5 318
|
[35] |
Pereira V M, Neto A H C and Peres N M R 2009 Phys. Rev. B 80 045401
|
[36] |
Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P and Shen Z X 2008 ACS Nano 2 2301
|
[37] |
Bao W Z, Miao F, Chen Z, Zhang H, Jang W Y, Dames C and Lau C N 2009 Nat. Nanotechnol. 4 562
|
[38] |
Li Z J, Cheng Z G, Wang R, Li Q and Fang Y 2009 Nano Lett. 9 3599
|
[39] |
Yamamoto M, Pierre-Louis O, Huang J, Fuhrer M S, Einstein T L and Cullen W G 2012 Phys. Rev. X 2 041018
|
[40] |
Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
|
[41] |
Wang D C, Zhang Y M, Zhang Y M, Lei T M, Guo H, Wang Y H, Tang X Y and Wang H 2011 Chin. Phys. B 20 128101
|
[42] |
Das A P S, Chakraborty B, Piscanec S, Saha S K, Waghmare U V, Novoselov K S, Krishnamurthy H R, Geim A K, Ferrari A C and Sood A K 2008 Nat. Nanotechnol. 3 210
|
[43] |
Matousek P, Towrie M and Parker A W 2002 J. Raman Spectrosc. 33 238
|
[44] |
Gurman J L, Baier L and Levin B C 1987 Fire Mater. 11 109
|
[45] |
Jorio A, Ferreira E H M, Moutinho M V O, Stavale F, Achete C A and Capaz R B 2010 Phys. Status Solidi B 247 2980
|
[46] |
Lobkovsky A, Gentges S, Li H, Morse D and Witten T A 1995 Science 270 1482
|
[47] |
Bowden N, Brittain S, Evans A G, Hutchinson J W and Whitesides G M 1998 Nature 393 146
|
[48] |
Huang Y, Wu J and Hwang K C 2006 Phys. Rev. B 74 245413
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|