Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 027102    DOI: 10.1088/1674-1056/23/2/027102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Different influences of Schottky metal on the strain and relative permittivity of barrier layer between AlN/GaN and AlGaN/GaN heterostructure Schottky diodes

Lü Yuan-Jie (吕元杰)a, Feng Zhi-Hong (冯志红)a, Gu Guo-Dong (顾国栋)a, Dun Shao-Bo (敦少博)a, Yin Jia-Yun (尹甲运)a, Wang Yuan-Gang (王元刚)a, Xu Peng (徐鹏)a, Han Ting-Ting (韩婷婷)a, Song Xu-Bo (宋旭波)a, Cai Shu-Jun (蔡树军)a, Luan Chong-Biao (栾崇彪)b, Lin Zhao-Jun (林兆军)b
a National Key Laboratory of Application Specific Integrated Circuit, Hebei Semiconductor Research Institute, Shijiazhuang 050051, China;
b School of Physics, Shandong University, Jinan 250100, China
Abstract  Ni/Au Schottky contacts on AlN/GaN and AlGaN/GaN heterostructures are fabricated. Based on the measured current–voltage and capacitance-voltage curves, the polarization sheet charge density and relative permittivity are analyzed and calculated by self-consistently solving Schrödinger’s and Poisson’s equations. It is found that the values of relative permittivity and polarization sheet charge density of AlN/GaN diode are both much smaller than the ones of AlGaN/GaN diode, and also much lower than the theoretical values. Moreover, by fitting the measured forward I–V curves, the extracted dislocations existing in the barrier layer of the AlN/GaN diode are found to be much more than those of the AlGaN/GaN diode. As a result, the conclusion can be made that compared with AlGaN/GaN diode the Schottky metal has an enhanced influence on the strain of the extremely thinner AlN barrier layer, which is attributed to the more dislocations.
Keywords:  Al(Ga)N/GaN      strain      relative permittivity      Schottky metal  
Received:  29 March 2013      Revised:  06 May 2013      Accepted manuscript online: 
PACS:  71.55.Eq (III-V semiconductors)  
  77.80.bn (Strain and interface effects)  
  77.22.Ch (Permittivity (dielectric function))  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61306113, 60876009, and 11174182).
Corresponding Authors:  Feng Zhi-Hong     E-mail:  917vv@163.com
About author:  71.55.Eq; 77.80.bn; 77.22.Ch; 73.30.+y

Cite this article: 

Lü Yuan-Jie (吕元杰), Feng Zhi-Hong (冯志红), Gu Guo-Dong (顾国栋), Dun Shao-Bo (敦少博), Yin Jia-Yun (尹甲运), Wang Yuan-Gang (王元刚), Xu Peng (徐鹏), Han Ting-Ting (韩婷婷), Song Xu-Bo (宋旭波), Cai Shu-Jun (蔡树军), Luan Chong-Biao (栾崇彪), Lin Zhao-Jun (林兆军) Different influences of Schottky metal on the strain and relative permittivity of barrier layer between AlN/GaN and AlGaN/GaN heterostructure Schottky diodes 2014 Chin. Phys. B 23 027102

[1] Medjdoub F, Zegaoui M, Ducatteaux D, Rolland N and Rolland P A 2011 IEEE Electron Dev. Lett. 32 874
[2] Chang C Y, Pearton S J, Lo C F, Ren F, Kravchenko I I, Dabiran A M, Wowchak A M, Cui B and Chow P P 2009 Appl. Phys. Lett. 94 263505
[3] Cen L B, Shen B, Qin Z X and Zhang G Y 2009 Chin. Phys. B 18 3905
[4] Shinohara K, Regan D, Corrion A, Brown D, Tang Y, Wong J, Candia G, Schmitz A, Fung H, Kim S and Micovic M 2012 IEDM Tech. Dig. 27.2.1
[5] Lin Z J, Zhao J Z, Corrigan T D, Wang Z, You Z D, Wang Z G and Lu W 2008 J. Appl. Phys. 103 044503
[6] Sarua A, Ji H F, Kuball M, Uren M J, Martin T, Nash K J, Hilton K P and Balmer R S 2006 Appl. Phys. Lett. 88 103502
[7] Lü Y J, Lin Z J, Zhang Y, Meng L G, Cao Z F, Luan C B, Chen H and Wang Z G 2011 Chin. Phys. B 20 097106
[8] Shi L, Feng S W, Guo C S, Zhu H and Wan N 2013 Chin. Phys. B 22 027201
[9] Zhao Z J, Lin Z J, Corrigan T D, Wang Z, You Z D and Wang Z G 2007 Appl. Phys. Lett. 91 173507
[10] Lü Y J, Lin Z J, Zhang Y, Meng L G, Cao Z F, Luan C B, Chen H and Wang Z G 2011 Chin. Phys. B 20 047105
[11] Martin G, Botchkarev A, Rockett A and Morkoc H 1996 Appl. Phys. Lett. 68 2541
[12] Ye P D, Yang B, Ng K K, Bude J, Wilk G D, Halder S and Hwang J C M 2005 Appl. Phys. Lett. 86 063501
[13] Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A and Stutzmann M 2000 J. Appl. Phys. 87 334
[14] Lü Y J, Lin Z J, Meng L G, Yu Y X, Luan C B, Cao Z F, Chen H, Sun B Q and Wang Z G 2011 Appl. Phys. Lett. 99 123504
[15] Lü Y J, Lin Z J, Corrigan T D, Zhao J Z, Cao Z F, Wang Z G and Chen H 2011 J. Appl. Phys. 109 074512
[16] Chen C H, Baier S M, Arch D K and Shur M S 1988 IEEE Trans. Electron Dev. 35 570
[17] Arslan E, Altindal Ş, Ozçelik S and Ozbay E 2009 J. Appl. Phys. 105 023705
[18] Donoval D, Barus M and Zdimal M 1991 Solid-State Electron. 34 1365
[19] Cao Z F, Lin Z J, Lü Y J, Luan C B, Yu Y X, Chen H and Wang Z G 2012 Chin. Phys. B 21 017103
[20] Lin Z J, Lu W, Lee J, Liu D M, Flynn J S and Brandes G R 2003 Appl. Phys. Lett. 82 4364
[21] Flores F G P, Rivera C and Munoz E 2009 Appl. Phys. Lett. 95 203504
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[3] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[4] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[5] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[6] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[7] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[8] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[9] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[10] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[11] Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene
Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Chin. Phys. B, 2022, 31(12): 126101.
[12] Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然). Chin. Phys. B, 2022, 31(12): 126801.
[13] Strain-modulated anisotropic Andreev reflection in a graphene-based superconducting junction
Xingfei Zhou(周兴飞), Ziming Xu (许子铭), Deliang Cao(曹德亮), and Fenghua Qi(戚凤华). Chin. Phys. B, 2022, 31(11): 117403.
[14] Skyrmion transport driven by pure voltage generated strain gradient
Shan Qiu(邱珊), Jia-Hao Liu(刘嘉豪), Ya-Bo Chen(陈亚博), Yun-Ping Zhao(赵云平), Bo Wei(危波), and Liang Fang(方粮). Chin. Phys. B, 2022, 31(11): 117701.
[15] Microcrack localization using a collinear Lamb wave frequency-mixing technique in a thin plate
Ji-Shuo Wang(王积硕), Cai-Bin Xu(许才彬), You-Xuan Zhao(赵友选), Ning Hu(胡宁), and Ming-Xi Deng(邓明晰). Chin. Phys. B, 2022, 31(1): 014301.
No Suggested Reading articles found!