Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 026101    DOI: 10.1088/1674-1056/23/2/026101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of annealing process on characteristics of fully transparent zinc tin oxide thin-film transistor

Chen Yong-Yue (陈勇跃), Wang Xiong (王雄), Cai Xi-Kun (才玺坤), Yuan Zi-Jian (原子健), Zhu Xia-Ming (朱夏明), Qiu Dong-Jiang (邱东江), Wu Hui-Zhen (吴惠桢)
Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
Abstract  Annealing effect on the performance of fully transparent thin-film transistor (TTFT), in which zinc tin oxide (ZnSnO) is used as the channel material and SiO2 as the gate insulator, is investigated. The ZnSnO active layer is deposited by radio frequency magnetron sputtering while a SiO2 gate insulator is formed by plasma-enhanced chemical vapor deposition. The saturation field-effect mobility and on/off ratio of the TTFT are improved by low temperature annealing in vacuum. Maximum saturation field-effect mobility and on/off ratio of 56.2 cm2/(V·s) and 3×105 are obtained, respectively. The transfer characteristics of the ZnSnO TFT are simulated using an analytical model and good agreement between measured and the calculated transfer characteristics is demonstrated.
Keywords:  zinc tin oxide      thin-film transistors      mobility      annealing  
Received:  27 December 2012      Revised:  23 July 2013      Accepted manuscript online: 
PACS:  61.66.Dk (Alloys )  
  68.55.ag (Semiconductors)  
  73.61.Ga (II-VI semiconductors)  
  78.66.Hf (II-VI semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61290305 and 91021020) and the Natural Science Foundation of Zhejiang Province, China (Grant No. Z6100117).
Corresponding Authors:  Wu Hui-Zhen     E-mail:  hzwu@zju.edu.cn
About author:  61.66.Dk; 68.55.ag; 73.61.Ga; 78.66.Hf

Cite this article: 

Chen Yong-Yue (陈勇跃), Wang Xiong (王雄), Cai Xi-Kun (才玺坤), Yuan Zi-Jian (原子健), Zhu Xia-Ming (朱夏明), Qiu Dong-Jiang (邱东江), Wu Hui-Zhen (吴惠桢) Effects of annealing process on characteristics of fully transparent zinc tin oxide thin-film transistor 2014 Chin. Phys. B 23 026101

[1] Wang L, Yoon M H, Lu G, Yang Y, Facchetti A and Marks T J 2006 Nat. Mater. 5 893
[2] Oh M S, Han J I, Lee K, Lee B H, Sung M M and Im S 2010 Electrochem. Solid-State Lett. 13 194
[3] Carcia P F, McLean R S, Reilly M H and Nunes J G 2003 Appl. Phys. Lett. 82 1117
[4] Fortunato E, Barquinha P, Pimentel A, Gonçalves A, Marques A, Pereira L and Martins R 2005 Thin Solid Films 487 205
[5] Zhu X, Wu H, Wang S, Zhang Y, Cai C, Si J, Yuan Z, Du X and Dong S 2009 J. Semicond. 30 033001
[6] Sun C, Mathews N, Zheng M, Sow C H, Wong L H and Mhaisalkar S G 2010 J. Phys. Chem. C 114 1331
[7] Presley R E, Munsee C L, Park C H, Hong D, Wager J F and Keszler D A 2004 J. Phys. D: Appl. Phys. 37 2810
[8] Dehuff N L, Kettenring E S, Hong D, Chiang H Q, Wager J F, Hoffman R L, Park C H and Keszler D A 2005 J. Appl. Phys. 97 064505
[9] Paine D C, Yaglioglu B, Beiley Z and Lee S 2008 Thin Solid Films 516 5894
[10] Cai X K, Yuan Z J, Zhu X M, Wang X, Zhang B P, Qiu D J and Wu H Z 2011 Chin. Phys. B 20 106103
[11] Lim W, Douglas E A, Lee J, Jang J, Craciun V, Norton D P, Pearton S J, Ren F, Son S Y, Yuh J H, Shen H and Chang W 2009 J. Vac. Sci. Technol. B: Microelectron. Nanometer Structures 27 2128
[12] Huang H Q, Sun J, Liu F J, Zhao J W, Hu Z F, Li Z J, Zhang X Q and Wang Y S 2011 Chin. Phys. Lett. 28 128502
[13] Satoh K, Kakehi Y, Okamoto A, Murakami S, Moriwaki K and Yotsuya T 2008 Thin Solid Films 516 5814
[14] Jayaraj M K, Saji K J, Nomura K, Kamiya T and Hosono H 2008 J. Vac. Sci. Technol. B: Microelectron. Nanometer Structures 26 495
[15] Gorrn P, Lehnhardt M, Riedl T and Kowalsky W 2007 Appl. Phys. Lett. 91 193504
[16] Seo Seok-Jun, Choi C G, Hwang Y H and Bae Byeong-Soo 2009 J. Phys. D: Appl. Phys. 42 035106
[17] Jackson W B, Hoffman R L and Herman G S 2005 Appl. Phys. Lett. 87 193503
[18] Chiang H Q, Wager J F, Hoffman R L, Jeong J and Keszler D A 2005 Appl. Phys. Lett. 86 013503
[19] Cross R B M, Souza M M D, Deane S C and Young N D 2008 IEEE Trans. Electron Dev. 55 1109
[20] Bae H S, Kim J H and Im S 2004 Solid-State Lett. 7 279
[21] Oh B Y and Jeong M C 2007 Semicond. Sci. Technol. 22 608
[22] Zhang L, Zhang H, Bai Y, Ma J W, Cao J, Jiang X Y and Zhang Z L 2008 Solid State Commun. 146 387
[23] Triska J, Conley J F, Presley R and Wager J F 2009 Integrated Reliability Workshop Final Report, 2009, IRW ’09, IEEE International 86
[24] Wager J F 2010 Journal of the Society for Information Display 18/10 749
[25] Zhang L, Li J, Zhang X W, Jiang X Y and Zhang Z L 2010 Thin Solid Films 518 6130
[26] Chiang H Q, McFarlane B R, Hong D, Presley R E and Wager J F 2008 J. Non-Cryst. Solids 354 2826
[27] Moriga T, Hayashi Y, Kondo K, Nishimura Y, Murai K, Nakabayashi I, Fukumoto H and Tominaga K 2004 J. Vac. Sci. Technol. A 22 1705
[28] Lee S, Bierig B and Paine D C 2012 Thin Solid Films 520 3764
[29] Barquinha P, Gonçalves G, Pereira L, Martins R and Fortunato E 2007 Thin Solid Films 515 8450
[30] Shur M S, Slade H C, Jacunski M D, Owusu A A and Ytterdal T 1997 J. Electrochem. Soc. 144 2833
[31] Abe K, Kaji N, Kumomi H, Nomura K, Kamiya T, Hirano M and Hosono H 2011 IEEE Trans. Electron Dev. 58 3463
[32] Shur M, Hack M and Shaw J G 1989 J. Appl. Phys. 66 3371
[33] Colalongo L 2001 Solid-State Electronics 45 1525
[34] Servati P and Nathan A 2002 IEEE Trans. Electron Dev. 49 812
[35] Zhang A, Zhao X R, Duan L B, Liu J M and Zhao J L 2011 Chin. Phys. B 20 057201
[1] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[2] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[3] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[4] Degradation mechanisms for a-InGaZnO thin-film transistors functioning under simultaneous DC gate and drain biases
Tianyuan Song(宋天源), Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Qi Shan(单奇). Chin. Phys. B, 2022, 31(8): 088101.
[5] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
[6] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[7] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[8] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[9] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[10] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[11] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[12] Electron delocalization enhances the thermoelectric performance of misfit layer compound (Sn1-xBixS)1.2(TiS2)2
Xin Zhao(赵昕), Xuanwei Zhao(赵轩为), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2022, 31(11): 117202.
[13] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[14] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[15] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
No Suggested Reading articles found!