Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 026102    DOI: 10.1088/1674-1056/23/2/026102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Dielectric and infrared properties of SrTiO3 single crystal doped by 3d (V, Mn, Fe, Ni) and 4f (Nd, Sm, Er) ions

S. Maletica, D. Maleticb, I. Petronijevica, J. Dojcilovica, D. M. Popovica
a Faculty of Physics, University of Belgrade, Studentski trg 12–14, 11000 Belgrade, Serbia;
b Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
Abstract  In this study, the effects of doping by 3d (V, Mn, Fe, Ni) and 4f (Nd, Sm, Er) ions on dielectric and infrared properties of SrTiO3 (STO) single crystals are investigated. It is well known that doping of the SrTiO3 can change the dielectric properties of the STO from an insulator to an n-type semiconductor, and even to a metallic conductor. Dielectric and infrared (IR) properties of the undoped STO and doped STO single crystals are analyzed using dielectric spectroscopy (80 kHz–5 MHz), transmission (200 cm-1–4000 cm-1), and reflection spectroscopy (50 cm-1–2000 cm-1). It is found that doping by the 3d ions reduces the value of dielectric permittivity, but the trend of temperature dependence of the dielectric permittivity remains almost unchanged. On the other hand, dielectric spectroscopy measurements for samples doped by 4f ions show the anomalous behaviors of the dielectric permittivity at temperatures around the temperature of the structural phase transition. There are two fractures of temperature dependences of inverse dielectric permittivity εr-1(T). Transmittance spectroscopy measurements show that there are differences in the shape of the spectrum in the mid-IR region between the undoped STO and the one doped by 4f ions. The differences in the reflectance spectrum between the STO:Nd and STO are analyzed in detail.
Keywords:  doping      dielectric properties      phase transitions      infrared spectroscopy  
Received:  07 March 2013      Revised:  09 July 2013      Accepted manuscript online: 
PACS:  61.72.S- (Impurities in crystals)  
  63.20.-e (Phonons in crystal lattices)  
  77.22.Ch (Permittivity (dielectric function))  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the Science Fund from the Ministry of Education and Science of the Republic of Serbia (Grant No. 171029).
Corresponding Authors:  S. Maletic     E-mail:  sslavica@ff.bg.ac.rs
About author:  61.72.S-; 63.20.-e; 77.22.Ch; 78.20.Ci

Cite this article: 

S. Maletic, D. Maletic, I. Petronijevic, J. Dojcilovic, D. M. Popovic Dielectric and infrared properties of SrTiO3 single crystal doped by 3d (V, Mn, Fe, Ni) and 4f (Nd, Sm, Er) ions 2014 Chin. Phys. B 23 026102

[1] Viana R, Lunkenheimer P, Hemberger J, Böhmer R and Loidl A 1994 Phys. Rev. B 50 601
[2] Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
[3] Gevorgian S 2009 Ferroelectrics in Microwave Devices, Circuits and Systems (London: Springer) p. 62
[4] Ma Z Z, Li J Q, Tian Z M, Qiu Y and Yuan S L 2012 Chin. Phys. B 21 107503
[5] Shields T C, Abell J S, Button T W, Chakalov R A, Chakalova R I, Cai C, Haessler W, Eickemeyer J and de Boer B 2002 Physica C 372–376 747
[6] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402
[7] Gao J, Yang T, Ma P and Dai Y D 2010 Chin. Phys. B 19 067402
[8] Kamarás K, Barth K L, Keilmann F, Henn R, Reedyk M, Thomsen C, Cardona M, Kircher J, Richards P L and Stehle J L 1995 J. Appl. Phys. 78 1235
[9] Dore P, Paolone A and Trippetti R 1996 J. Appl. Phys. 80 5270
[10] Bednorz J G and Müller K A 1984 Phys. Rev. Lett. 52 2289
[11] Ang C, Yu Z, Hemberger J, Lunkenheimer P and Loidl A 1999 Phys. Rev. B 59 6665
[12] Bianchi U, Kleemann W and Bednorz J G 1994 J. Phys.: Condens. Matter 6 1229
[13] Ma J Y, Bi C Z, Fang X, Zhao H Y, Kamran M and Qiu X G 2007 Physica C 463–465 107
[14] Gervais F, Servoin J L, Baratoff A, Bednorz J G and Binnig G 1993 Phys. Rev. B 47 8187
[15] Yun J N, Zhang Z Y, Yan J F and Deng Z H 2010 Chin. Phys. B 19 017101
[16] Jourdan M and Adrian H 2003 Physica C 388–389 509
[17] Gentils A, Copie O, Herranz G, Fortuna F, Bibes M, Bouzehouane K, Jacquet É, Carrétéo C, Basletić M, Tafra E, Hamzić A and Barthéléy A 2010 Phys. Rev. B 81 144109
[18] Gross H, Bansal N, Kim Y S and Oh S 2011 J. Appl. Phys. 110 073704
[19] Schooley J F, Hosler W R and Cohen M L 1964 Phys. Rev. Lett. 12 474
[20] Benthem K V, Elsässer C and French R H 2001 J. Appl. Phys. 90 6156
[21] Yun J N, Zhang Z Y, Yan J F and Zhao W 2009 Chin. Phys. Lett. 26 017107
[22] Byrappa K and Ohachi T 2003 Crystal Growth Technology (New York: William Andrew Inc., Norwich) p. 564
[23] Kulagin N, Dojcilovic J and Popovic D 2001 Cryogenics 41 745
[24] Müller K A and Burkhard H 1979 Phys. Rev. B 19 3593
[25] Weaver H E 1959 J. Phys. Chem. Solids 11 274
[26] Marder M P 2000 Condensed Matter Physics (New York: Wiley-Interscience) p. 659
[27] Barrett J H 1952 Phys. Rev. 86 118
[28] Kulagin N and Dojcilovic J 1999 Physica B 269 49
[29] Dojcilovic J, Kulagin N, Popovic D and Spasovic S 2004 Crystallography Reports 49 469
[30] Maletic S, Paunovic N, Popovic D and Dojcilovic J 2009 Proceeding of the 7th International Conference of the Balkan Physical Union, September 9–13, 2009, Alexandroupolis, Greece, p. 267
[31] Galasso F S 1969 Structure, Properties and Preparation of Perovskite-Type Compounds (Oxford: Pergamon) p. 3
[32] Lemanov V V 1999 Ferroelectrics 226 133
[33] Maletic S, Popovic D and Dojcilovic J 2010 J. Alloys Compd. 496 388
[34] Shannon R D 1976 Acta Cryst. A 32 751
[35] Eichel R A 2007 J. Electroceram. 19 11
[36] Tsur Y, Dunbar T D and Randall C A 2001 J. Electroceram. 7 25
[37] Reik H G and Heese D 1967 J. Phys. Chem. Solids 28 581
[38] Shanthi N and Sarma D D 1998 Phys. Rev. B 57 2153
[39] Palik E D 1998 Handbook of Optical Constants of Solids (New York: Academic Press) p. 13
[40] Crandles D A, Timusk T, Garrett J D and Greedan J 1994 Phys. Rev. B 49 4299
[41] Guo X G, Chen X S, Sun Y L, Sun L Z, Zhou X H and Lu W 2003 Phys. Lett. A 317 501
[42] Born M and Wolf E 1999 Principles of Optics, 7th edn. (Cambridge: Cambridge University Press) p. 40
[1] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[2] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[3] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[4] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[5] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[6] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[7] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[8] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[9] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[10] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[11] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[12] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[13] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[14] MOS-based model of four-transistor CMOS image sensor pixels for photoelectric simulation
Bing Zhang(张冰), Congzhen Hu(胡从振), Youze Xin(辛有泽), Yaoxin Li(李垚鑫), Zhuoqi Guo(郭卓奇), Zhongming Xue(薛仲明), Li Dong(董力), Shanzhe Yu(于善哲), Xiaofei Wang(王晓飞), Shuyu Lei(雷述宇), and Li Geng(耿莉). Chin. Phys. B, 2022, 31(5): 058503.
[15] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
No Suggested Reading articles found!