Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 024208    DOI: 10.1088/1674-1056/23/2/024208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Maximal entanglement from photon-added nonlinear coherent states via unitary beam splitters

K. Berradaa b c
a Al Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Department of Physics, Riyadh, Saudi Arabia;
b The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, Miramare-Trieste, Italy;
c Laboratoire de Physique Théorique, Faculté des Sciences, Université Mohammed V-Agdal, Av. Ibn Battouta, B. P. 1014, Agdal Rabat, Morocco
Abstract  In this paper, we construct photon-added f-deformed coherent states (PAf-DCSs) for nonlinear bosonic fields by discussing Klauder’s minimal set of conditions required to obtain coherent states. Using this set of nonlinear states, we propose a very useful scheme for generating the maximal amount of entanglement via unitary beam splitters for different strength regimes of the input field α, deformation q and excitation number m. Therefore, the possibility to create highly entangled states and to control the entanglement is proposed. Moreover, the condition for a maximal and separable output beam state is obtained. Finally, we examine the statistical properties of the PAf-DCSs through the Mandel parameter and exploit a connection between this quantity and the behavior variation of the output state entanglement. Our result may open new perspectives in different tasks of quantum information processing.
Keywords:  photon-added nonlinear coherent states      beam splitter      linear entropy      entanglement      statistical properties  
Received:  20 April 2013      Revised:  17 June 2013      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.67.-a (Quantum information)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.65.Ca (Formalism)  
Corresponding Authors:  K. Berrada     E-mail:  kberrada@ictp.it
About author:  42.50.Dv; 03.67.-a; 03.65.Ud; 03.65.Ca

Cite this article: 

K. Berrada Maximal entanglement from photon-added nonlinear coherent states via unitary beam splitters 2014 Chin. Phys. B 23 024208

[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Shrödinger E 1935 Proc. Camb. Phil. Soc. 31 555
[3] Nielsen M A and Chuang I L 2000 Quantum Computation and Information (Cambridge: Cambridge University Press)
[4] Berrada K 2013 Open Sys. Inf. Dynamics 20 1350001
[5] Berrada K 2012 Opt. Commun. 285 2227
[6] Alber G, Beth T, Horodecki M, Horodecki P, Horodecki R, Rötteler M, Weinfurter H and Zeilinger R A 2001 Quantum Information (Berlin: Springer) Chap. 5
[7] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[8] Joo J, Munro W J and Spiller T P 2011 Phys. Rev. Lett. 107 083601
[9] Berrada K, Abdel Khalek S and Raymond Ooi C H 2012 Phys. Rev. A 86 033823
[10] Berrada K, Fanchini F F and Abdel-Khalek S 2012 Phys. Rev. A 85 052315
[11] Tan S M, Walls D F and Collett M J 1991 Phys. Rev. Lett. 66 252
[12] Toth G, Simon C and Cirac J I 2003 Phys. Rev. A 68 062310
[13] Zheng S B and Guo GC 2000 Phys. Rev. Lett. 85 2392
[14] Gershenfeld N and Chuang I L 1995 Science 275 235
[15] Kim M S, Son W, Buzek V and Knight P L 2002 Phys. Rev. A 65 032323
[16] Ivan J S, Mukunda N and Simon R 2006 Generation of NPT Entanglement from Nonclassical Photon Statistics quant-ph/0603255
[17] Berrada K, Baz M El and Hassouni Y 2011 J. Stat. Phys. 142 510
[18] Schrödinger E 1926 Naturwissenschaften. 14 664
[19] Glauber R J 1963 Phys. Rev. 131 2766
[20] Jurco B 1991 Lett. Math. Phys. 21 51
[21] Dodonov V V 2002 J. Opt. B: Quantum Semiclass. Opt. 4 R1
[22] Ellinas D 1993 On Coherent States and q-Deformed Algebras hepth/9309072
[23] Scarfone A M and Narayana Swamy P 2009 J. Stat. Mech. DOI:10.1088/1742-5468/2009/02/P02055
[24] Chaturvedi S, Kappoor A K, Sandhya R and Srinivasan V 1991 Phys. Rev. A 43 4555
[25] Chiu S H, Gray R W and Nelson C A 1992 Phys. Lett. A 164 237
[26] Kimble H J, Dagenais M and Mandel L 1977 Phys. Rev. Lett. 39 691
[27] Teich M C and Salch B E A 1985 J. Opt. Soc. Am. B 2 275
[28] Hong C K and Mandel L 1985 Phys. Rev. Lett. 54 323
[29] Wu L A, Kimble H J, Hall J L andWu H 1985 Phys. Rev. Lett. 57 2520
[30] Short R and Mandel L 1983 Phys. Rev. Lett. 51 384
[31] Perina J, Hradil Z and Jurco B 1994 Quantum Optics and Fundamentals of Physics (Dordrechet)
[32] Ballesteros A, Civitarese O and Reboiro M 2003 Phys. Rev. C 68 044307
[33] Biedenharn L C and Lohe M A 1995 Quantum Group Symmetry and q-Tensor Algebras (Singapore: World Scientific)
[34] Meljanac S, Milekovic M and Pallua S 1994 Phys. Lett. B 328 55
[35] Ballesteros A, Civitarese O and Reboiro M 2005 Phys. Rev. C 72 014305
[36] Floratos E G 1991 J. Phys. A: Math. Gen. 24 4739
[37] Avancini S S and Krein G 1995 J. Phys. A: Math. Gen. 28 685
[38] Lorek A, Ruffing A and Wess J 1997 Z. Phys. C 74 369
[39] Fichtmuller M, Lorek A and Wess J 1996 Z. Phys. C 71 533
[40] Schwenk J and Wess J 1992 Phys. Lett. B 291 273
[41] Zhang J Z 1999 Phys. Lett. A 262 125
[42] Zhang J Z 1998 Phys. Lett. B 440 66
[43] Zhang J Z and Osland P 2001 Eur. Phys. J. C 20 393
[44] Ballesteros A, Civitarese O, Herranz F J and Reboiro M 2002 Phys. Rev. C 66 064317
[45] Sviratcheva K D, Bahri C, Georgieva A I and Draayer J P 2004 Phys. Rev. Lett. 83 152501
[46] Katriel J and Solomon A I 1994 Phys. Rev. A 49 5149
[47] Mancini S and Man’ko V I 2001 Europhys. Lett. 54 586
[48] Tsallis C 1988 J. Stat. Phys. 52 479
[49] Braz J 1999 Physica 29 1
[50] Klauder J R and Skagertam B 1985 Coherent States: Application in Physics and Mathematical Physics (Singapore: World Scientific)
[51] Aharonov Y, Falkoff D, Lerner E and Pendelton H 1966 Ann. Phys. 39 498
[52] Hillery M and Zubairy M S 2006 Phys. Rev. Lett. 96 050503
[53] Hillery M, Dung H T and Niset J 2009 Phys. Rev. A 80 052335
[54] Berrada K and Hassouni Y 2011 Eur. Phys. J. D 61 513
[55] Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L873
[56] Zhang S 1995 Phys. Lett. A 202 18
[57] Arik M and Coon D D 1976 J. Math. Phys. 17 524
[58] Biedenharn L 1989 J. Phys A: Math. Gen. 22 L873
[59] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press)
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[5] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[6] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[9] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[10] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[11] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[12] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[13] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[14] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[15] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
No Suggested Reading articles found!