CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Mn overlayers on PbTe (111): Substitutional adsorption and interface formation |
Wu Hai-Fei (吴海飞)a b, Zhang Han-Jie (张寒洁)a, Lu Yun-Hao (陆赟豪)c, Yan Yong-Hong (鄢永红)b, Li Hai-Yang (李海洋)a, Bao Shi-Ning (鲍世宁)a, He Pi-Mo (何丕模)a |
a Department of Physics, Zhejiang University, Hangzhou 310027, China; b Department of Physics, Shaoxing University, Shaoxing 312000, China; c Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract The formation of the Mn/PbTe (111) interface is investigated by photoemission spectrum. The core level behavior of Mn 2p is consistent with Mn substitutional adsorption during the initial Mn deposition, forming a (√3× √3)R30°-Pb0.67Mn0.33Te phase of the second layer. Further deposition of Mn can cause metallic Mn islands to cover the substitutional substrate. Ultraviolet photoemission measurements show that the Fermi level is shifted into the conduction band, indicating Ohmic contact formation at the Mn/PbTe (111) interface. The valence band maximum associated with the Pb0.67Mn0.33Te layer is located at 1.27 eV below the Fermi level, and a schematic electronic structure of the Mn/PbTe (111) interface is given. The work function of the substituted substrate with Pb-covered Mn islands is determined to be 4.16 eV, in comparison with 4.35 eV for the Pb-covered substituted substrate and 3.95 eV for the pristine PbTe (111) surface.
|
Received: 22 April 2014
Revised: 31 July 2014
Accepted manuscript online:
|
PACS:
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
79.60.Jv
|
(Interfaces; heterostructures; nanostructures)
|
|
73.30.+y
|
(Surface double layers, Schottky barriers, and work functions)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074214, 51202149, and 11204180),the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ12F04001), the Scientific Research Fund of Zhejiang Provincial Education Department, China (Grant No. Y201121234), and the Ministry of Science and Technology of China. |
Corresponding Authors:
He Pi-Mo
E-mail: phypmhe@dial.zju.edu.cn
|
Cite this article:
Wu Hai-Fei (吴海飞), Zhang Han-Jie (张寒洁), Lu Yun-Hao (陆赟豪), Yan Yong-Hong (鄢永红), Li Hai-Yang (李海洋), Bao Shi-Ning (鲍世宁), He Pi-Mo (何丕模) Mn overlayers on PbTe (111): Substitutional adsorption and interface formation 2014 Chin. Phys. B 23 127901
|
|
| [1] | Costi T A and Zlatic V 2012 Phys. Rev. Lett. 108 036402
|
|
| [2] | Hochreiner A, Schwarzl T, Eibelhuber M, Heiss W, Springholz G, Kolkovsky V, Karczewski G and Wojtowicz T 2011 Appl. Phys. Lett. 98 021106
|
|
| [3] | Si J X, Wu H Z, Xu T N, Cao C F and Huang Z C 2005 Chin. Phys. Lett. 22 2353
|
|
| [4] | Xu T N, Wu H Z and Si J X 2008 Acta Phys. Sin. 57 2574 (in Chinese)
|
|
| [5] | Galazka R R 1995 J. Magn. Magn. Mater. 140 13
|
|
| [6] | Story T, Karczewski G, Swierkowski L and Galazkal R R 1990 Phys. Rev. B 42 10477
|
|
| [7] | Dietl T and Spalek J 1983 Phys. Rev. B 28 1548
|
|
| [8] | Osinniy V, Jedrzejczak A, Domuchowski W, Dybko K, Witkowska B and Story T 2005 Acta Phys. Poloni. A 108 809
|
|
| [9] | Keiber T, Bridges F and Sales B C 2013 Phys. Rev. Lett. 111 095504
|
|
| [10] | Zhang H, Luo J, Zhu H T, Liang J K, Ruan L M, Liu Q L, Li J B and Liu G Y 2012 Acta Mater. 60 7241
|
|
| [11] | Hmooda A, Kadhim A and AbuHassan H 2013 Mater. Sci. Semicond. Proc. 16 612
|
|
| [12] | Yang D J, Lu C G, Yin H M and Herman I P 2013 Nanoscale 5 7290
|
|
| [13] | Rogacheva E I, Nashchekina O N, Grigorov S N, Us M A, Dresselhaus M S and Cronin S B 2003 Nanotechnology 14 53
|
|
| [14] | Rogacheva E I, Nashchekina O N and Meriuts A V 2005 Appl. Phys. Lett. 86 063103
|
|
| [15] | Lee P C, Chien C H, Dong G P, Huang W C, Chen C L, Tseng C M, Harutyunyan S R, Lee C H and Chen Y Y 2013 Appl. Phys. Lett. 103 023115
|
|
| [16] | Heremans J P, Dresselhaus M S, Bell L E and Morelli D T 2013 Nat. Nanotechnol. 8 471
|
|
| [17] | Buczko R and Cywinski L 2012 Phys. Rev. B 85 205319
|
|
| [18] | Chen Y L, Chu J H, Analytis J G, Liu Z K, Igarashi K, Kuo H H, Qi X L, Moore S K, Lu D H, Hashimoto M, Sasagawa T, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2010 Science 329 659
|
|
| [19] | Wu H F, Zhang H J, Lu Y H, Si J X, Li H Y, Bao S N, Wu H Z and He P 2008 Appl. Phys. Lett. 92 122112
|
|
| [20] | Hao S and Zhang Z 2007 Phys. Rev. Lett. 99 166101
|
|
| [21] | Das R K, Tripathi G S and Misra P K 2005 Phys. Rev. B 72 035216
|
|
| [22] | Lusakowski A and Dugaev V K 2005 Phys. Rev. B 71 014422
|
|
| [23] | Wu H F, Zhang H J, Liao Q, Si J X, Li H Y, Bao S N, Wu H Z and He P 2010 Surf. Sci. 604 882
|
|
| [24] | Wu H F, Zhang H J, Lu Y H, Xu T N, Si J X, Li H Y, Bao S N, Wu H Z and He P 2006 J. Cryst. Growth 294 179
|
|
| [25] | Ueda S, Sekiyama A, Iwasaki T, Imada S, Suga S, Saitoh Y, Giriat W and Takeyama S 2008 Phys. Rev. B 78 205206
|
|
| [26] | Bocquet A E, Mizokawa T, Saitoh T, Namatame H and Fujimori A 1992 Phys. Rev. B 46 3771
|
|
| [27] | Sangaletti L, Verdini A, Pagliara S, Drera, G, Floreano L, Goldoni A and Morgante A 2010 Phys. Rev. B 81 245320
|
|
| [28] | Wu H F, Wang Y, Lu Y H, Peng Y P and He P M 2013 Appl. Surf. Sci. 265 120
|
|
| [29] | Headrick R L, Robinson I K, Vlieg E and Feldman L C 1989 Phys. Rev. Lett. 63 1253
|
|
| [30] | Kitchen D, Richardella A, Tang J M, Flatté M E and Yazdani A 2006 Nature 442 436
|
|
| [31] | Lusakowski A, Boguslawski P and Radzy'nski T 2011 Phys. Rev. B 83 115206.
|
|
| [32] | Dharmadasa I M, Herrenden-Harker W G and Williams R H 1986 Appl. Phys. Lett. 48 1802
|
|
| [33] | Horn K 2000 Appl. Surf. Sci. 166 1
|
|
| [34] | Zhang Y C and Stucky G D 2014 Chem. Mater. 26 837
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|