Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 127901    DOI: 10.1088/1674-1056/23/12/127901
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Mn overlayers on PbTe (111): Substitutional adsorption and interface formation

Wu Hai-Fei (吴海飞)a b, Zhang Han-Jie (张寒洁)a, Lu Yun-Hao (陆赟豪)c, Yan Yong-Hong (鄢永红)b, Li Hai-Yang (李海洋)a, Bao Shi-Ning (鲍世宁)a, He Pi-Mo (何丕模)a
a Department of Physics, Zhejiang University, Hangzhou 310027, China;
b Department of Physics, Shaoxing University, Shaoxing 312000, China;
c Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
Abstract  The formation of the Mn/PbTe (111) interface is investigated by photoemission spectrum. The core level behavior of Mn 2p is consistent with Mn substitutional adsorption during the initial Mn deposition, forming a (√3× √3)R30°-Pb0.67Mn0.33Te phase of the second layer. Further deposition of Mn can cause metallic Mn islands to cover the substitutional substrate. Ultraviolet photoemission measurements show that the Fermi level is shifted into the conduction band, indicating Ohmic contact formation at the Mn/PbTe (111) interface. The valence band maximum associated with the Pb0.67Mn0.33Te layer is located at 1.27 eV below the Fermi level, and a schematic electronic structure of the Mn/PbTe (111) interface is given. The work function of the substituted substrate with Pb-covered Mn islands is determined to be 4.16 eV, in comparison with 4.35 eV for the Pb-covered substituted substrate and 3.95 eV for the pristine PbTe (111) surface.
Keywords:  photoemission spectrum      metal–semiconductor      electronic structure      PbTe  
Received:  22 April 2014      Revised:  31 July 2014      Accepted manuscript online: 
PACS:  79.60.-i (Photoemission and photoelectron spectra)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074214, 51202149, and 11204180),the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ12F04001), the Scientific Research Fund of Zhejiang Provincial Education Department, China (Grant No. Y201121234), and the Ministry of Science and Technology of China.
Corresponding Authors:  He Pi-Mo     E-mail:  phypmhe@dial.zju.edu.cn

Cite this article: 

Wu Hai-Fei (吴海飞), Zhang Han-Jie (张寒洁), Lu Yun-Hao (陆赟豪), Yan Yong-Hong (鄢永红), Li Hai-Yang (李海洋), Bao Shi-Ning (鲍世宁), He Pi-Mo (何丕模) Mn overlayers on PbTe (111): Substitutional adsorption and interface formation 2014 Chin. Phys. B 23 127901

[1]Costi T A and Zlatic V 2012 Phys. Rev. Lett. 108 036402
[2]Hochreiner A, Schwarzl T, Eibelhuber M, Heiss W, Springholz G, Kolkovsky V, Karczewski G and Wojtowicz T 2011 Appl. Phys. Lett. 98 021106
[3]Si J X, Wu H Z, Xu T N, Cao C F and Huang Z C 2005 Chin. Phys. Lett. 22 2353
[4]Xu T N, Wu H Z and Si J X 2008 Acta Phys. Sin. 57 2574 (in Chinese)
[5]Galazka R R 1995 J. Magn. Magn. Mater. 140 13
[6]Story T, Karczewski G, Swierkowski L and Galazkal R R 1990 Phys. Rev. B 42 10477
[7]Dietl T and Spalek J 1983 Phys. Rev. B 28 1548
[8]Osinniy V, Jedrzejczak A, Domuchowski W, Dybko K, Witkowska B and Story T 2005 Acta Phys. Poloni. A 108 809
[9]Keiber T, Bridges F and Sales B C 2013 Phys. Rev. Lett. 111 095504
[10]Zhang H, Luo J, Zhu H T, Liang J K, Ruan L M, Liu Q L, Li J B and Liu G Y 2012 Acta Mater. 60 7241
[11]Hmooda A, Kadhim A and AbuHassan H 2013 Mater. Sci. Semicond. Proc. 16 612
[12]Yang D J, Lu C G, Yin H M and Herman I P 2013 Nanoscale 5 7290
[13]Rogacheva E I, Nashchekina O N, Grigorov S N, Us M A, Dresselhaus M S and Cronin S B 2003 Nanotechnology 14 53
[14]Rogacheva E I, Nashchekina O N and Meriuts A V 2005 Appl. Phys. Lett. 86 063103
[15]Lee P C, Chien C H, Dong G P, Huang W C, Chen C L, Tseng C M, Harutyunyan S R, Lee C H and Chen Y Y 2013 Appl. Phys. Lett. 103 023115
[16]Heremans J P, Dresselhaus M S, Bell L E and Morelli D T 2013 Nat. Nanotechnol. 8 471
[17]Buczko R and Cywinski L 2012 Phys. Rev. B 85 205319
[18]Chen Y L, Chu J H, Analytis J G, Liu Z K, Igarashi K, Kuo H H, Qi X L, Moore S K, Lu D H, Hashimoto M, Sasagawa T, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2010 Science 329 659
[19]Wu H F, Zhang H J, Lu Y H, Si J X, Li H Y, Bao S N, Wu H Z and He P 2008 Appl. Phys. Lett. 92 122112
[20]Hao S and Zhang Z 2007 Phys. Rev. Lett. 99 166101
[21]Das R K, Tripathi G S and Misra P K 2005 Phys. Rev. B 72 035216
[22]Lusakowski A and Dugaev V K 2005 Phys. Rev. B 71 014422
[23]Wu H F, Zhang H J, Liao Q, Si J X, Li H Y, Bao S N, Wu H Z and He P 2010 Surf. Sci. 604 882
[24]Wu H F, Zhang H J, Lu Y H, Xu T N, Si J X, Li H Y, Bao S N, Wu H Z and He P 2006 J. Cryst. Growth 294 179
[25]Ueda S, Sekiyama A, Iwasaki T, Imada S, Suga S, Saitoh Y, Giriat W and Takeyama S 2008 Phys. Rev. B 78 205206
[26]Bocquet A E, Mizokawa T, Saitoh T, Namatame H and Fujimori A 1992 Phys. Rev. B 46 3771
[27]Sangaletti L, Verdini A, Pagliara S, Drera, G, Floreano L, Goldoni A and Morgante A 2010 Phys. Rev. B 81 245320
[28]Wu H F, Wang Y, Lu Y H, Peng Y P and He P M 2013 Appl. Surf. Sci. 265 120
[29]Headrick R L, Robinson I K, Vlieg E and Feldman L C 1989 Phys. Rev. Lett. 63 1253
[30]Kitchen D, Richardella A, Tang J M, Flatté M E and Yazdani A 2006 Nature 442 436
[31]Lusakowski A, Boguslawski P and Radzy'nski T 2011 Phys. Rev. B 83 115206.
[32]Dharmadasa I M, Herrenden-Harker W G and Williams R H 1986 Appl. Phys. Lett. 48 1802
[33]Horn K 2000 Appl. Surf. Sci. 166 1
[34]Zhang Y C and Stucky G D 2014 Chem. Mater. 26 837
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[5] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[6] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[9] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[10] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[11] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[12] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[13] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[14] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[15] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
No Suggested Reading articles found!