Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 124202    DOI: 10.1088/1674-1056/23/12/124202
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Enhancement of four-wave mixing process in a four-level double semiconductor quantum well

She Yan-Chao (佘彦超)a b, Zheng Xue-Jun (郑学军)a b, Wang Deng-Long (王登龙)a b
a Faculty of Materials, Optoelectronics and Physics, Xiangtan University, Xiangtan 411105, China;
b Key Laboratory of Low Dimensional Materials and Application Technology of the Ministry of Education, Xiangtan University, Xiangtan 411105, China
Abstract  The time-dependent four-wave mixing (FWM) is analyzed in a four-level double semiconductor quantum well. The results show that both the amplitude and the conversion efficiency of the FWM field are enhanced with increasing the strength of two-photon Rabi frequency. Interestingly, when the one-photon detuning becomes stronger the control field corresponding to the maximum efficiency increases. Such a controlled enhanced FWM may be used to generate coherent short-wave length radiation, and it can have potential applications in quantum control and communications.
Keywords:  electromagnetically induced transparency      semiconductor quantum wells      four-wave mixing  
Received:  11 March 2014      Revised:  26 April 2014      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  78.67.De (Quantum wells)  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1080), the National Natural Science Foundation of China (Grant Nos. 51272158, 11374252, and 51372214), the Changjiang Scholar Incentive Program, China (Grant No. [2009]17), the Shanghai Nano Special Foundation, China (Grant No. 11nm0502600), the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 12A140), the Science and Technology Foundation of Guizhou Province, China (Grant No. J20122314), and the Hunan Provincial Innovation Foundation for Postgraduate, China (Grant No. CX2012B248).
Corresponding Authors:  Zheng Xue-Jun, Wang Deng-Long     E-mail:  zhengxuejun@xtu.edu.cn;dlwang@xtu.edu.cn

Cite this article: 

She Yan-Chao (佘彦超), Zheng Xue-Jun (郑学军), Wang Deng-Long (王登龙) Enhancement of four-wave mixing process in a four-level double semiconductor quantum well 2014 Chin. Phys. B 23 124202

[1]Harris S E, Field J E and Imamoglu A 1990 Phys. Rev. Lett. 64 1107
[2]Harris S E 1997 Phys. Today 50 36
[3]Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[4]Paspalakis E and Knight P L 2002 Phys. Rev. A 66 015802
[5]Wu Y and Deng L 2004 Phys. Rev. Lett. 93 143904
[6]Hang C and Huang G 2008 Phys. Rev. A 77 033830
[7]Yang W X, Chen A X, Si L G, Jiang K, Yang X and Lee R K 2010 Phys. Rev. A 81 023814
[8]She Y C, Wang D L, Zhang W X, He Z M and Ding J W 2010 J. Opt. Soc. Am. B 27 208
[9]She Y C, Wang D L, Zhang W X, Zhang Z Q and Ding J W 2011 Eur. Phys. J. D 61 181
[10]Hu Z F, Du C G, Li D J and Li S Q 2002 Chin. Phys. Lett. 19 1805
[11]Sun J F and Li Y F 2003 Acta Phys. Sin. 52 547 (in Chinese)
[12]Tu F Y, Zhang G Q, Chen C, Gao F, Bo F, Liu J B and Xu J J 2007 Physics 36 399 (in Chinese)
[13]Zhang G Z, Hakuta K and Stoicheff B P 1993 Phys. Rev. Lett. 71 3099
[14]Deng L, Kozuma M, Hagley E W and Payne M G 2002 Phys. Rev. Lett. 88 143902
[15]Li H J and Huang G X 2007 Phys. Rev. A 76 043809
[16]Wu Y, Payne M G, Hagley E W and Deng L 2004 Opt. Lett. 29 2294
[17]Niu Y P, Li R X and Gong S Q 2005 Phys. Rev. A 71 043819
[18]Zhang Y, Brown A W and Xiao M 2007 Phys. Rev. Lett. 99 123603
[19]Zhang S A, Sun Z R, Wang Y F, Zeng H P, Wang Z G, Lin J, Huang W H, Xu Z Z and Li R X 2004 Chin. Phys. 13 1287
[20]Zuo Z C, Sun J, Liu X, Mi X, Yu Z H, Jiang Q, Fu P M and Wu L A 2007 Chin. Phys. 16 1042
[21]Xue Y, Wang G, Wu J H, Zhang B and Gao J Y 2011 Chin. Phys. B 20 033403
[22]Chen W, Meng Z and Zhou H J 2012 Chin. Phys. B 21 094215
[23]Yang W X, Hou J M and Lee R K 2009 J. Mod. Opt. 56 716
[24]Sun H, Fan S L, Zhang H J and Gong S Q 2013 Phys. Rev. B 87 235310
[25]Phillips M C, Wang H, Rumyantsev I, Kwong N H, Takayama R and Binder R 2003 Phys. Rev. Lett. 91 183602
[26]Wu J H, Gao J Y, Xu J H, Silvestri L, Artoni M, La Rocca G C and Bassani F 2005 Phys. Rev. Lett. 95 057401
[27]Sun H, Niu Y P, Li R, Jin S and Gong S Q 2007 Opt. Lett. 32 2475
[28]Joshi A 2009 Phys. Rev. B 79 115315
[29]Zhu C J and Huang G X 2011 Opt. Express 19 23364
[30]Sun H, Fan S L, Feng X L, Wu C F, Gong S Q, Huang G X and Oh C H 2012 Opt. Express 20 8485
[31]She Y C, Zheng X J, Wang D L and Zhang W X 2013 Opt. Express 21 17393
[32]Hao X Y, Li J H, Liu J B, Song P J and Yang X X 2008 Phys. Lett. A 372 2509
[33]Yang W X and Lee R K 2008 Opt. Express 16 17161
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[3] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[4] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[5] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[6] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[7] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[8] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[9] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[10] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[11] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[12] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[13] A two-mode squeezed light based on a double-pump phase-matching geometry
Xuan-Jian He(何烜坚), Jun Jia(贾俊), Gao-Feng Jiao(焦高锋), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2020, 29(7): 074207.
[14] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
[15] Coherent 420 nm laser beam generated by four-wave mixing in Rb vapor with a single continuous-wave laser
Hao Liu(刘浩), Jin-Peng Yuan(元晋鹏), Li-Rong Wang(汪丽蓉), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(4): 043203.
No Suggested Reading articles found!