Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 124201    DOI: 10.1088/1674-1056/23/12/124201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effect of electromagnetic disturbance on thepractical QKD system in the smart grid

Li Fang-Yi (李芳毅)a b, Wang Dong (王东)a b, Wang Shuang (王双)a b, Li Mo (李默)a b, Yin Zhen-Qiang (银振强)a b, Li Hong-Wei (李宏伟)a b, Chen Wei (陈巍)a b, Han Zheng-Fu (韩正甫)a b
a Key Laboratory of Quantum Information, University of Science and Technology of China,Chinese Academy of Sciences, Hefei 230026, China;
b Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  

To improve the security of the smart grid, quantum key distribution (QKD) is an excellent choice. The rapid fluctuations on the power aerial optical cable and electromagnetic disturbance in substations are two main challenges for implementation of QKD. Due to insensitivity to birefringence of the channel, the stable phase-coding Faraday–Michelson QKD system is very practical in the smart grid. However, the electromagnetic disturbance in substations on this practical QKD system should be considered. The disturbance might change the rotation angle of the Faraday mirror, and would introduce an additional quantum bit error rate (QBER). We derive the new fringe visibility of the system and the additional QBER from the electromagnetic disturbance. In the worst case, the average additional QBER only increases about 0.17% due to the disturbance, which is relatively small to normal QBER values. We also find the way to degrade the electromagnetic disturbance on the QKD system.

Keywords:  Faraday mirror      electromagnetic disturbance      quantum key distribution      quantum bit error rate      smart grid  
Received:  29 April 2014      Revised:  30 May 2014      Accepted manuscript online: 
PACS:  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61101137, 61201239, 61205118, and 11304397) and the National Basic Research Program of China (Grants No. 2013CB338002).

Corresponding Authors:  Wang Shuang, Yin Zhen-Qiang     E-mail:  wshuang@ustc.edu.cn;yinzheqi@mail.ustc.edu.cn

Cite this article: 

Li Fang-Yi (李芳毅), Wang Dong (王东), Wang Shuang (王双), Li Mo (李默), Yin Zhen-Qiang (银振强), Li Hong-Wei (李宏伟), Chen Wei (陈巍), Han Zheng-Fu (韩正甫) Effect of electromagnetic disturbance on thepractical QKD system in the smart grid 2014 Chin. Phys. B 23 124201

[1]Wu L, Zheng L J, Kaniki K, Chen Y Q and Yang X H 2007 Chin. Phys. Lett. 24 90
[2]Zhu Z L, Lang J H and Qiao H 2013 Acta Phys. Sin. 62 163103 (in Chinese)
[3]Gao X Y, You K, Zhang X M, Liu Y L and Liu Y F 2013 Acta Phys. Sin. 62 233302 (in Chinese)
[4]Shao X P, Zhao M and Yang X H 2013 Chin. Phys. B 22 073302
[5]Beneventi L, Casavecchia P, Pirani F, Vecchiocattivi F, Volpi G, Brocks G, van der Avoird A, Heijmen B and Reuss J 1991 J. Chem. Phys. 95 195
[6]Henderson G and Ewing G E 1973 J. Chem. Phys. 59 2280
[7]Mettes J, Heyrnen B, Verhoeve P, Reuss J, Laine D C and Brocks G 1985 Chem. Phys. 92 9
[8]Gomes J A G, Gossage J L, Balu H, Kesmez M, Bowen F, Lumpkin R S and Cocke D L 2005 Spectrochimica Acta Part A 61 3082
[9]Cooper P D, Kjaergaard H G, Langford V S, McKinley A J, Quickenden T I, Robinson T W and Schofield D P 2005 J. Phys. Chem. A 109 4274
[10]Kuma S, Slipchenko M N, Momose T and Vilesov A F 2010 J. Phys. Chem. A 114 9022.
[11]Kasai Y, Dupuy E, Saito R, Hashimoto K, Sabu A, Kondo S, Sumiyoshi Y and Endo Y 2011 Atmos. Chem. Phys. 11 8607
[12]Walker A R H, Fraser G T, Hougen J T, Lugez C L, Suenram R D and Fawzy W M, "Electron-spin and tunneling effects in the microwave spectrum of SO2--O2", in: WI-08, the 52nd International Symposium on Molecular Spectroscopy, 1997, Ohio State University, Columbus, Ohio, USA
[13]Walker A R H, Fraser G T, Hougen J T, Suenram R D, Fawzy W M and Novick S E, "An improved fit of the microwave spectrum of SO2--O2", in: FD-08, the 53rd International Symposium on Molecular Spectroscopy, 1998, Ohio State University, Columbus, Ohio, USA
[14]Bahou M, Schriver-Mazzuoli L, Camy-Peyret C, Schriver A, Chia-vassa T and Aycard J P 1997 Chem. Phys. Lett. 265 145
[15]Qian H B, Seccombe D and Howard B J 1997 J. Chem. Phys. 107 7658
[16]Hunt R D and Andrews L 1987 J. Chem. Phys. 86 3781
[17]Fawzy W M, Lovejoy C M, Nesbitt D J and Hougen J 2002 J. Chem. Phys. 117 693
[18]Wu S, Sedo G, Grumstrup E M and Leopold K R 2007 J. Chem. Phys. 127 204315
[19]van Lenthe J H and van Duijneveldt F B 1984 J. Chem. Phys. 81 3168
[20]Cybulski S M, Kendall R A, Chalasinski G, Severson M W and Szczesniak M M 1997 J. Chem. Phys. 106 7731
[21]Sabu A, Kondo S, Miura N and Hashimoto K 2004 Chem. Phys. Lett. 391 101
[22]Sabu A, Kondo S, Saito R, Kasai Y and Hashimoto K 2005 J. Phys. Chem. A 109 1836
[23]Sapse A M 1983 J. Chem. Phys. 78 5733
[24]Reed A E, Weinhold F, Curtiss L A and Pochatko D J 1984 J. Chem. Phys. 84 5687
[25]Fawzy W M 2006 J. Chem. Phys. 124 164303
[26]Fawzy W M 1998 J. Chem. Phys. 109 348
[27]Zheng R, Zhu Y, Li S, Fang M and Duan C X 2011 J. Mol. Spectrosc. 265 102
[28]Li S, Zheng R, Zhu Y and Duan C X 2011 J. Chem. Phys. 134 134304
[29]Reich M, Schieder R, Clar H J and Winnewisser G 1986 Appl. Opt. 25 130
[30]L S Rothman et al. 2009 Journal of Quantitative Spectroscopy and Radiative Transfer 110 533
[31]Qian H B, Low S J, Seccombe D and Howard B J 1997 J. Chem. Phys. 107 7651
[32]Dehghany M, Afshari M, Thompson R I, Moazzen-Ahmadi N and McKellar A R W 2008 J. Mol. Spectrosc. 252 1
[33]Dehghany M, Afshari M, Moazzen-Ahmadi N and McKellar A R W 2009 J. Chem. Phys. 130 044303
[34]Fawzy W M 2010 Comp. Phys. Comm. 181 1789
[35]Randall R W, Dyke T R and Howard B J 1988 Faraday. Discuss. Chem. Soc. 86 21
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
[5] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[6] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[7] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[8] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[9] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[10] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[11] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[12] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[13] Serverless distributed learning for smart grid analytics
Gang Huang(黄刚), Chao Wu(吴超), Yifan Hu(胡一帆), and Chuangxin Guo(郭创新). Chin. Phys. B, 2021, 30(8): 088802.
[14] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[15] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
No Suggested Reading articles found!