ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Effect of electromagnetic disturbance on thepractical QKD system in the smart grid |
Li Fang-Yi (李芳毅)a b, Wang Dong (王东)a b, Wang Shuang (王双)a b, Li Mo (李默)a b, Yin Zhen-Qiang (银振强)a b, Li Hong-Wei (李宏伟)a b, Chen Wei (陈巍)a b, Han Zheng-Fu (韩正甫)a b |
a Key Laboratory of Quantum Information, University of Science and Technology of China,Chinese Academy of Sciences, Hefei 230026, China;
b Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract To improve the security of the smart grid, quantum key distribution (QKD) is an excellent choice. The rapid fluctuations on the power aerial optical cable and electromagnetic disturbance in substations are two main challenges for implementation of QKD. Due to insensitivity to birefringence of the channel, the stable phase-coding Faraday–Michelson QKD system is very practical in the smart grid. However, the electromagnetic disturbance in substations on this practical QKD system should be considered. The disturbance might change the rotation angle of the Faraday mirror, and would introduce an additional quantum bit error rate (QBER). We derive the new fringe visibility of the system and the additional QBER from the electromagnetic disturbance. In the worst case, the average additional QBER only increases about 0.17% due to the disturbance, which is relatively small to normal QBER values. We also find the way to degrade the electromagnetic disturbance on the QKD system.
|
Received: 29 April 2014
Revised: 30 May 2014
Accepted manuscript online:
|
PACS:
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61101137, 61201239, 61205118, and 11304397) and the National Basic Research Program of China (Grants No. 2013CB338002). |
Corresponding Authors:
Wang Shuang, Yin Zhen-Qiang
E-mail: wshuang@ustc.edu.cn;yinzheqi@mail.ustc.edu.cn
|
Cite this article:
Li Fang-Yi (李芳毅), Wang Dong (王东), Wang Shuang (王双), Li Mo (李默), Yin Zhen-Qiang (银振强), Li Hong-Wei (李宏伟), Chen Wei (陈巍), Han Zheng-Fu (韩正甫) Effect of electromagnetic disturbance on thepractical QKD system in the smart grid 2014 Chin. Phys. B 23 124201
|
|
| [1] | Wu L, Zheng L J, Kaniki K, Chen Y Q and Yang X H 2007 Chin. Phys. Lett. 24 90
|
|
| [2] | Zhu Z L, Lang J H and Qiao H 2013 Acta Phys. Sin. 62 163103 (in Chinese)
|
|
| [3] | Gao X Y, You K, Zhang X M, Liu Y L and Liu Y F 2013 Acta Phys. Sin. 62 233302 (in Chinese)
|
|
| [4] | Shao X P, Zhao M and Yang X H 2013 Chin. Phys. B 22 073302
|
|
| [5] | Beneventi L, Casavecchia P, Pirani F, Vecchiocattivi F, Volpi G, Brocks G, van der Avoird A, Heijmen B and Reuss J 1991 J. Chem. Phys. 95 195
|
|
| [6] | Henderson G and Ewing G E 1973 J. Chem. Phys. 59 2280
|
|
| [7] | Mettes J, Heyrnen B, Verhoeve P, Reuss J, Laine D C and Brocks G 1985 Chem. Phys. 92 9
|
|
| [8] | Gomes J A G, Gossage J L, Balu H, Kesmez M, Bowen F, Lumpkin R S and Cocke D L 2005 Spectrochimica Acta Part A 61 3082
|
|
| [9] | Cooper P D, Kjaergaard H G, Langford V S, McKinley A J, Quickenden T I, Robinson T W and Schofield D P 2005 J. Phys. Chem. A 109 4274
|
|
| [10] | Kuma S, Slipchenko M N, Momose T and Vilesov A F 2010 J. Phys. Chem. A 114 9022.
|
|
| [11] | Kasai Y, Dupuy E, Saito R, Hashimoto K, Sabu A, Kondo S, Sumiyoshi Y and Endo Y 2011 Atmos. Chem. Phys. 11 8607
|
|
| [12] | Walker A R H, Fraser G T, Hougen J T, Lugez C L, Suenram R D and Fawzy W M, "Electron-spin and tunneling effects in the microwave spectrum of SO2--O2", in: WI-08, the 52nd International Symposium on Molecular Spectroscopy, 1997, Ohio State University, Columbus, Ohio, USA
|
|
| [13] | Walker A R H, Fraser G T, Hougen J T, Suenram R D, Fawzy W M and Novick S E, "An improved fit of the microwave spectrum of SO2--O2", in: FD-08, the 53rd International Symposium on Molecular Spectroscopy, 1998, Ohio State University, Columbus, Ohio, USA
|
|
| [14] | Bahou M, Schriver-Mazzuoli L, Camy-Peyret C, Schriver A, Chia-vassa T and Aycard J P 1997 Chem. Phys. Lett. 265 145
|
|
| [15] | Qian H B, Seccombe D and Howard B J 1997 J. Chem. Phys. 107 7658
|
|
| [16] | Hunt R D and Andrews L 1987 J. Chem. Phys. 86 3781
|
|
| [17] | Fawzy W M, Lovejoy C M, Nesbitt D J and Hougen J 2002 J. Chem. Phys. 117 693
|
|
| [18] | Wu S, Sedo G, Grumstrup E M and Leopold K R 2007 J. Chem. Phys. 127 204315
|
|
| [19] | van Lenthe J H and van Duijneveldt F B 1984 J. Chem. Phys. 81 3168
|
|
| [20] | Cybulski S M, Kendall R A, Chalasinski G, Severson M W and Szczesniak M M 1997 J. Chem. Phys. 106 7731
|
|
| [21] | Sabu A, Kondo S, Miura N and Hashimoto K 2004 Chem. Phys. Lett. 391 101
|
|
| [22] | Sabu A, Kondo S, Saito R, Kasai Y and Hashimoto K 2005 J. Phys. Chem. A 109 1836
|
|
| [23] | Sapse A M 1983 J. Chem. Phys. 78 5733
|
|
| [24] | Reed A E, Weinhold F, Curtiss L A and Pochatko D J 1984 J. Chem. Phys. 84 5687
|
|
| [25] | Fawzy W M 2006 J. Chem. Phys. 124 164303
|
|
| [26] | Fawzy W M 1998 J. Chem. Phys. 109 348
|
|
| [27] | Zheng R, Zhu Y, Li S, Fang M and Duan C X 2011 J. Mol. Spectrosc. 265 102
|
|
| [28] | Li S, Zheng R, Zhu Y and Duan C X 2011 J. Chem. Phys. 134 134304
|
|
| [29] | Reich M, Schieder R, Clar H J and Winnewisser G 1986 Appl. Opt. 25 130
|
|
| [30] | L S Rothman et al. 2009 Journal of Quantitative Spectroscopy and Radiative Transfer 110 533
|
|
| [31] | Qian H B, Low S J, Seccombe D and Howard B J 1997 J. Chem. Phys. 107 7651
|
|
| [32] | Dehghany M, Afshari M, Thompson R I, Moazzen-Ahmadi N and McKellar A R W 2008 J. Mol. Spectrosc. 252 1
|
|
| [33] | Dehghany M, Afshari M, Moazzen-Ahmadi N and McKellar A R W 2009 J. Chem. Phys. 130 044303
|
|
| [34] | Fawzy W M 2010 Comp. Phys. Comm. 181 1789
|
|
| [35] | Randall R W, Dyke T R and Howard B J 1988 Faraday. Discuss. Chem. Soc. 86 21
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|