Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(12): 123701    DOI: 10.1088/1674-1056/23/12/123701
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Adiabatic cooling for cold polar molecules on a chip using a controllable high-efficiency electrostatic surface trap

Li Sheng-Qiang (李胜强), Xu Liang (许亮), Xia Yong (夏勇), Wang Hai-Ling (汪海玲), Yin Jian-Ping (印建平)
State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062, China
Abstract  We propose a controllable high-efficiency electrostatic surface trap for cold polar molecules on a chip by using two insulator-embedded charged rings and a grounded conductor plate. We calculate Stark energy structure pattern of ND3 molecules in an external electric field using the method of matrix diagonalization. We analyze how the voltages that are applied to the ring electrodes affect the depth of the efficient well and the controllability of the distance between the trap center and the surface of the chip. To obtain a better understanding, we simulate the dynamical loading and trapping processes of ND3 molecules in a|J, KM>=|1, -1> state by using classical Monte–Carlo method. Our study shows that the loading efficiency of our trap can reach ~ 88%. Finally, we study the adiabatic cooling of cold molecules in our surface trap by linearly lowering the potential-well depth (i.e., lowering the trapping voltage), and find that the temperature of the trapped ND3 molecules can be adiabatically cooled from 34.5 mK to ~ 5.8 mK when the trapping voltage is reduced from -35 kV to -3 kV.
Keywords:  controllable      high-efficiency      surface trap      cold polar molecules  
Received:  18 April 2014      Revised:  23 June 2014      Accepted manuscript online: 
PACS:  37.10.Pq (Trapping of molecules)  
  37.10.Mn (Slowing and cooling of molecules)  
  37.10.Vz (Mechanical effects of light on atoms, molecules, and ions)  
  37.20.+j (Atomic and molecular beam sources and techniques)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10674047, 10804031, 10904037, 10904060, 10974055, 11034002, and 61205198), the National Key Basic Research and Development Program of China (Grant Nos. 2006CB921604 and 2011CB921602), the Basic Key Program of Shanghai Municipality, China (Grant No. 07JC14017), the Fundamental Research Funds for the Central Universities, and the Shanghai Leading Academic Discipline Project, China (Grant No. B408).
Corresponding Authors:  Yin Jian-Ping     E-mail:  jpyin@phy.ecnu.edu.cn

Cite this article: 

Li Sheng-Qiang (李胜强), Xu Liang (许亮), Xia Yong (夏勇), Wang Hai-Ling (汪海玲), Yin Jian-Ping (印建平) Adiabatic cooling for cold polar molecules on a chip using a controllable high-efficiency electrostatic surface trap 2014 Chin. Phys. B 23 123701

[1]Schnell M and Meijer G 2009 Angew. Chem. Int. Ed. 48 6010
[2]Friedrich B and Doyle J M 2009 ChemPhysChem 10 604
[3]van de Meerakker S Y T, Bethlem H L, Vanhaecke N and Meijer G 2012 Chem. Rev. 112 4828
[4]Lemeshko M, Krems R V, Doyle J M and Kais S 2013 Mol. Phys. 111 1648
[5]Hogan S D, Motsch M and Merkt M 2011 Phys. Chem. Chem. Phys. 13 18705
[6]Veldhoven J V, Kupper J, Bethlem H L, Sartakov B, vanRoij A J A and Meijer G 2004 Eur. Phys. J. D 31 337
[7]Filsinger F, Erlekam U, Von Helden G, Kupper J and Meijer G 2008 Phys. Rev. Lett. 100 133003
[8]Gilijamse J J, Hoekstra S, vande Meerakker S Y T, Groenenboom G C and Meijer G 2006 Science 313 1617
[9]Willitsch S, Bell M T, Gingell A D, Procter S R and Softley T P 2008 Phys. Rev. Lett. 100 043203
[10]Otto R, Mikosch J, Trippel S, Weidemuller M and Wester R 2008 Phys. Rev. Lett. 101 063201
[11]Shuman E S, Barry J F and DeMille D 2010 Nature 467 820
[12]Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y and Ye J 2013 Phys. Rev. Lett. 110 143001
[13]Thorscheim H R, Weiner J and Julienne P S 1987 Phys. Rev. Lett. 58 2420
[14]Lett P D, Helmerson K, Phillips W D, Ratliff L P, Rolston S L and Wagshul M E 1993 Phys. Rev. Lett. 71 2200
[15]Miller J D, Cline R A and Heinzen D J 1993 Phys. Rev. Lett. 71 2204
[16]Ni K K, Ospelkaus S, de Miranda M H G, Peer A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S and Ye J 2008 Science 322 231
[17]Lang F, Winkler K, Strauss C, Grimm R and Hecker D J 2008 Phys. Rev. Lett. 101 133005
[18]Danzl J G, Haller E, Gustavsson M, Mark M J, Hart R, Bouloufa N, Dulieu O, Ritsch H and Nagerl H C 2008 Science 321 1062
[19]Campbell W C, Groenenboom G C, Lu H I, Tsikata E and Doyle J M 2008 Phys. Rev. Lett. 100 083003
[20]Weinstein J D, De Carvalho R, Guillet T, Friedrich B and Doyle J M 1998 Nature 395 148
[21]Rangwala S A, Junglen T, Rieger T, Pinkse P W H and Rempe G 2003 Phys. Rev. A 67 043406
[22]Bethlem H L, Berden G and Meijer G 1999 Phys. Rev. Lett. 83 1558
[23]Bethlem H L, Berden G, Crompvoets F M H, Jongma R T, van Roij A J A and Meijer G 2000 Nature 406 491
[24]Hudson E R, Ticknor C, Sawyer B C, Taaties C A, Lewandowski H J, Bochinski J R, Bohn J L and Ye J 2006 Phys. Rev. A 73 063404
[25]Hou S Y, Li S Q, Deng L Z and Yin J P 2013 J. Phys. B: At. Mol. Opt. Phys. 46 045301
[26]Yamakita Y, Procter S R, Goodgame A L, Softley T P and Merkt F 2004 J. Chem. Phys. 121 1419
[27]Vanhaecke N, Meier U, Andrist M, Meier B H and Merkt F 2007 Phys. Rev. A 75 031402
[28]Hogan S D, Sprecher D, Andrist M, Vanhaecke N and Merkt F 2007 Phys. Rev. A 76 023412
[29]Hogan S D, Wiederkehr A W, Schmutz H and Merkt F 2008 Phys. Rev. Lett. 101 143001
[30]Barker P F and Shneider M N 2002 Phys. Rev. A 66 065402
[31]Fulton R, Bishop A I, Shneider M N and Barker P F 2006 Nat. Phys. 2 465
[32]Elioff M S, Valentini J J and Chandler D W 2003 Science 302 1940
[33]Liu N N and Loesch H 2007 Phys. Rev. Lett. 98 103002
[34]Moon P B, Rettner C T and Simons J P 1978 J. Chem. Soc. Faraday Trans. 74 630
[35]Bethlem H L, Crompvoets F M H, Jongma R T, van de Meerakker S Y T and Meijer G 2002 Phys. Rev. A 65 053416
[36]van de Meerakker S Y T, Vanhaecke N, van der Loo M P J, Groenenboom G C and Meijer G 2005 Phys. Rev. Lett. 95 013003
[37]Gilijamse J J, Hoekstra S, Meek S A, Metsala M, van de Meerakker S Y T, Meijer G and Groenenboom G C 2007 J. Chem. Phys. 127 221102
[38]Andre A, DeMille D, Doyle J M, Lukin M D, Maxwell S E, Rabl P, Schoelkopf R J and Zoller P 2006 Nat. Phys. 2 636
[39]Bethlem H L, Berden G, Crompvoets F M H, Jongma R T, van Roij A J A and Meijer G 2000 Nature 406 491
[40]van Veldhoven J, Bethlem H L, Schnell M and Meijer G 2006 Phys. Rev. A 73 063408
[41]Hendrick L B, van Veldhoven J, Melanie Schnell and Meijer G 2006 Phys. Rev. A 74 063403
[42]Rieger T, Junglen T, Rangwala S A, Pinkse P W H and Rempe G 2005 Phys. Rev. Lett. 95 173002
[43]Leinert J K, Haimberger C, Zabawa P J and Bigelow N P 2007 Phys. Rev. Lett. 99 143002
[44]Buhmann S Y, Tarbutt M R, Scheel S and Hinds E A 2008 Phys. Rev. A 78 052901
[45]Meek S A, Conrad H and Meijer G 2009 Science 324 1699
[46]Ma H, Zhou B, Liao B and Yin J P 2007 Chin. Phys. Lett. 24 1228
[47]Wang Q, Li S Q, Hou S Y, Xia Y, Wang H L and Yin J P 2014 Chin. Phys. B 23 013701
[48]Zare R N 1987 Angular Momentum (New York: John Wiley & Sons) p. 177
[1] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[2] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[3] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
[4] Symmetry-controlled edge states in graphene-like topological sonic crystal
Zhang-Zhao Yang(杨彰昭), Jin-Heng Chen(陈晋恒), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔)†. Chin. Phys. B, 2020, 29(10): 104302.
[5] Controllable fabrication of self-organized nano-multilayers in copper-carbon films
Wei-Qi Wang(王伟奇), Li Ji(吉利), Hong-Xuan Li(李红轩), Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), Jian-Min Chen(陈建敏). Chin. Phys. B, 2019, 28(3): 036802.
[6] Application of millimeter-sized polymer cylindrical lens array concentrators in solar cells
Yao-Ju Zhang(张耀举), Yi-Jie Li(李艺杰), Jie Lin(林洁), Chao-Long Fang(方朝龙), Si-Yuan Liu(刘思远). Chin. Phys. B, 2018, 27(5): 058801.
[7] Cavity optomechanics: Manipulating photons and phonons towards the single-photon strong coupling
Yu-long Liu(刘玉龙), Chong Wang(王冲), Jing Zhang(张靖), Yu-xi Liu(刘玉玺). Chin. Phys. B, 2018, 27(2): 024204.
[8] Controllable optical superregular breathers in the femtosecond regime
Yang Ren(任杨), Zhan-Ying Yang(杨战营), Chong Liu(刘冲), Wen-Li Yang(杨文力). Chin. Phys. B, 2018, 27(1): 010504.
[9] Theoretical derivation and simulation of a versatileelectrostatic trap for cold polar molecules
Shengqiang Li(李胜强). Chin. Phys. B, 2016, 25(11): 113702.
[10] Modified model of gate leakage currents in AlGaN/GaN HEMTs
Yuan-Gang Wang(王元刚), Zhi-Hong Feng(冯志红), Yuan-Jie Lv(吕元杰), Xin Tan(谭鑫), Shao-Bo Dun(敦少博), Yu-Long Fang(房玉龙), Shu-Jun Cai(蔡树军). Chin. Phys. B, 2016, 25(10): 107106.
[11] Electrostatic surface trap for cold polar molecules on a chip
Wang Qin (王琴), Li Sheng-Qiang (李胜强), Hou Shun-Yong (侯顺永), Xia Yong (夏勇), Wang Hai-Ling (汪海玲), Yin Jian-Ping (印建平). Chin. Phys. B, 2014, 23(1): 013701.
[12] Weak Noether symmetry for a nonholonomic controllable mechanical system
Xia Li-Li(夏丽莉) and Shan Ling-Fang(山灵芳). Chin. Phys. B, 2010, 19(9): 090302.
[13] Perturbation to symmetries and Hojman adiabatic invariant for nonholonomic controllable mechanical systems with non-Chetaev type constraints
Xia Li-Li(夏丽莉) and Li Yuan-Cheng(李元成). Chin. Phys. B, 2007, 16(6): 1516-1520.
[14] Electrostatic surface guiding of cold polar molecules with a single charged wire
Deng Lian-Zhong(邓联忠), Xia Yong(夏勇), and Yin Jian-Ping(印建平). Chin. Phys. B, 2007, 16(3): 707-717.
[15] Novel electrostatic trap for cold polar molecules
Xu Xue-Yan (许雪艳), Ma Hui (马慧), and Yin Jian-Ping (印建平). Chin. Phys. B, 2007, 16(12): 3647-3654.
No Suggested Reading articles found!