CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Moiré patterns and step edges on few-layer graphene grown on nickel films |
Ke Fen (柯芬)a, Yin Xiu-Li (尹秀丽)a, Tong Nai (佟鼐)a, Lin Chen-Fang (林陈昉)a, Liu Nan (刘楠)b, Zhao Ru-Guang (赵汝光)a, Fu Lei (付磊)b, Liu Zhong-Fan (刘忠范)b, Hu Zong-Hai (胡宗海)a c |
a State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China;
b Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China;
c Collaborative Innovation Center for Quantum Matter, Beijing 100871, China |
|
|
Abstract Few-layer graphene grown on Ni thin films has been studied by scanning tunneling microscopy. In most areas on the surfaces, moiré patterns resulted from rotational stacking faults were observed. At a bias lower than 200 mV, only one sublattice shows up in regions without moiré patterns while both sublattices are seen in regions with moiré pattens. This phenomenon can be used to identify AB stacked regions. The scattering characteristics at various types of step edges are different from those of monolayer graphene edges, either armchair or zigzag.
|
Received: 21 April 2014
Revised: 14 May 2014
Accepted manuscript online:
|
PACS:
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
68.65.Cd
|
(Superlattices)
|
|
73.21.Cd
|
(Superlattices)
|
|
73.22.Pr
|
(Electronic structure of graphene)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB921300), the National Natural Science Foundation of China (Grant Nos. 11074005 and 91021007), and the Chinese Ministry of Education. |
Corresponding Authors:
Hu Zong-Hai
E-mail: zhhu@pku.edu.cn
|
Cite this article:
Ke Fen (柯芬), Yin Xiu-Li (尹秀丽), Tong Nai (佟鼐), Lin Chen-Fang (林陈昉), Liu Nan (刘楠), Zhao Ru-Guang (赵汝光), Fu Lei (付磊), Liu Zhong-Fan (刘忠范), Hu Zong-Hai (胡宗海) Moiré patterns and step edges on few-layer graphene grown on nickel films 2014 Chin. Phys. B 23 116801
|
[1] |
Mak K F, Lui C H, Shan J and Heinz T F 2009 Phys. Rev. Lett. 102 256405
|
[2] |
Kim K S, Walter A L, Moreschini L, Seyller T, Horn K, Rotenberg E and Bostwick A 2013 Nat. Mater. 12 887
|
[3] |
Li G H, Luican A, dos Santos J M B L, Neto A H C, Reina A, Kong J and Andrei E Y 2010 Nat. Phys. 6 109
|
[4] |
Lui C H, Li Z Q, Chen Z Y, Klimov P V, Brus L E and Heinz T F 2011 Nano Lett. 11 164
|
[5] |
He R, Chung T F, Delaney C, Keiser C, Jauregui L A, Shand P M, Chancey C C, Wang Y N, Bao J M and Chen Y P 2013 Nano Lett. 13 3594
|
[6] |
Singh M K, Titus E, Goncalves G, Marques P, Bdikin I, Kholkin A L and Gracio J J A 2010 Nanoscale 2 700
|
[7] |
Mak K F, Shan J and Heinz T F 2010 Phys. Rev. Lett. 104 176404
|
[8] |
Hao X, Chen Y F, Li P J, Wang Z G, Liu J B, He J R, Fan R, Sun J R, Zhang W L and Li Y R 2012 Chin. Phys. B 21 046801
|
[9] |
Pan Y, Shi D X and Gao H J 2007 Chin. Phys. 16 3151
|
[10] |
Bistritzer R and MacDonald A H 2011 PNAS 108 12233
|
[11] |
Reina A, Jia X T, Ho J, Nezich D, Son H B, Bulovic V, Dresselhaus M S and Kong J 2009 Nano Lett. 9 30
|
[12] |
Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
|
[13] |
Mun J H, Hwang C, Lim S K and Cho B J 2010 Carbon 48 447
|
[14] |
Thiele S, Reina A, Healey P, Kedzierski J, Wyatt P, Hsu P L, Keast C, Schaefer J and Kong J 2010 Nanotechnology 21 015601
|
[15] |
Cao H L, Yu Q K, Colby R, Pandey D, Park C S, Lian J, Zemlyanov D, Childres I, Drachev V, Stach E A, Hussain M, Li H, Pei S S and Chen Y P 2010 J. Appl. Phys. 107 044310
|
[16] |
Obraztsov A N, Obraztsova E A, Tyurnina A V and Zolotukhin A A 2007 Carbon 45 2017
|
[17] |
Gao M, Pan Y, Zhang C D, Hu H, Yang R, Lu H L, Cai J M, Du S X, Liu F and Gao H J 2010 Appl. Phys. Lett. 96 053109
|
[18] |
Varchon F, Mallet P, Magaud L and Veuillen J Y 2008 Phys. Rev. B 77 165415
|
[19] |
Wang M and Li C M 2011 Nanoscale 3 2324
|
[20] |
Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 17954
|
[21] |
Orlof A, Ruseckas J and Zozoulenko I V 2013 Phys. Rev. B 88 125409
|
[22] |
Ouyang F P, Chen L J, Xiao J and Zhang H 2011 Chin. Phys. Lett. 28 047304
|
[23] |
Rutter G M, Crain J N, Guisinger N P, Li T, First P N and Stroscio J A 2007 Science 317 219
|
[24] |
Yang H, Mayne A J, Boucherit M, Comtet G, Dujardin G and Kuk Y 2010 Nano Lett. 10 943
|
[25] |
Tian J F, Cao H L, Wu W, Yu Q K and Chen Y P 2011 Nano Lett. 11 3663
|
[26] |
Enoki T, Fujii S and Takai K 2012 Carbon 50 3141
|
[27] |
Brihuega I, Mallet P, Gonzalez-Herrero H, de Laissardiere G T, Ugeda M M, Magaud L, Gomez-Rodriguez J M, Yndurain F and Veuillen J Y 2012 Phys. Rev. Lett. 109 196802
|
[28] |
Kuwabara M, Clarke D R and Smith D A 1990 Appl. Phys. Lett. 56 2396
|
[29] |
Binnig G, Fuchs H, Gerber C, Rohrer H, Stoll E and Tosatti E 1986 Europhys. Lett. 1 31
|
[30] |
Tomanek D, Louie S G, Mamin H J, Abraham D W, Thomson R E, Ganz E and Clarke J 1987 Phys. Rev. B 35 7790
|
[31] |
Ouseph P J, Poothackanal T and Mathew G 1995 Phys. Lett. A 205 65
|
[32] |
Wang Y F, Ye Y C and Wu K 2006 Surf. Sci. 600 729
|
[33] |
Liu N, Fu L, Dai B Y, Yan K, Liu X, Zhao R Q, Zhang Y F and Liu Z F 2011 Nano Lett. 11 297
|
[34] |
Lahiri J, Lin Y, Bozkurt P, Oleynik II and Batzill M 2010 Nat. Nanotechnol. 5 326
|
[35] |
Chae S J, Gunes F, Kim K K, Kim E S, Han G H, Kim S M, Shin H J, Yoon S M, Choi J Y, Park M H, Yang C W, Pribat D and Lee Y H 2009 Adv. Mater. 21 2328
|
[36] |
Zhang X Y, Xin J and Ding F 2013 Nanoscale 5 2556
|
[37] |
Coraux J, N'Diaye A T, Busse C and Michely T 2008 Nano Lett. 8 565
|
[38] |
Marchini S, Günther S and Wintterlin J 2007 Phys. Rev. B 76 075429
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|