Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 116201    DOI: 10.1088/1674-1056/23/11/116201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Anti-plane problem analysis for icosahedral quasicrystals under shear loadings

Li Wu (李梧), Chai Yu-Zhen (柴玉珍)
School of Science, Taiyuan University of Technology, Taiyuan 030024, China
Abstract  The present paper is concerned with the longitudinal shear elasticity of three-dimensional icosahedral quasicrystals. By virtue of the Dugdale hypothesis along with the method of complex potential theory, it involves two defect problems of the icosahedral quasicrystals. The first one is the calculation of stress intensity factors and the size of the cohesive force zone in a half-infinite crack. Meanwhile, the crack tip tearing displacements can be exactly derived. The other is the demonstration of the generalized stress intensity factors induced by a sharp V-notch as an extension of a crack. The generalized E-integral around the notch tip gives the energy release rate when the V-notch degenerates into a crack. Apart from their own usefulness in carrying out some simplified crack analyses, the results obtained in this work can particularly serve as a basis for fracture mechanics of anti-plane defect problems of icosahedral quasicrystals.
Keywords:  quasicrystal      stress intensity factor      crack tip tearing displacement      energy release rate  
Received:  11 January 2014      Revised:  28 May 2014      Accepted manuscript online: 
PACS:  62.20.D- (Elasticity)  
  61.44.Br (Quasicrystals)  
  62.20.M- (Structural failure of materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11402158 and 11272053) and the Qualified Personnel Foundation of Taiyuan University of Technology of China (Grant No. tyut-rc201358a).
Corresponding Authors:  Li Wu     E-mail:  liwu@tyut.edu.cn

Cite this article: 

Li Wu (李梧), Chai Yu-Zhen (柴玉珍) Anti-plane problem analysis for icosahedral quasicrystals under shear loadings 2014 Chin. Phys. B 23 116201

[1] Shechtman D, Blech I, Gratias D and Cahn J W 1984 Phys. Rev. Lett. 53 1951
[2] Steffen F, Alexander E, Kathrin Z, Jan P, Sofia D, Walter S, Peter L and Stephan F 2011 Proc. Natl. Acad. Sci. 108 1810
[3] Fan T Y and Mai Y W 2004 Appl. Mech. Rev. 57 325
[4] Edagawa K 2007 Phil. Mag. 87 2789
[5] Caillard D, Vanderschaeve G and Bresson L 2000 Phil. Mag. A 80 237
[6] Trebin H R 1987 Phys. Rev. Lett. 58 1204
[7] Feuerbacher M, Bartsch M and Messerchmidt U 1997 Phil. Mag. Lett. 76 369
[8] Ding D H, Yang W G and Hu C Z 1993 Phys. Rev. B 48 7003
[9] Hu C Z, Wang R H and Ding D H 2000 Rep. Prog. Phys. 63 1
[10] Bak P 1985 Phys. Rev. B 32 5764
[11] Levine D, Lubensky T C, Ostlund S, Ramaswamy S, Steinhardt P J and Toner J 1985 Phys. Rev. Lett. 54 1520
[12] Lubensky T C, Ramaswamy S and Toner J 1985 Phys. Rev. B 32 7444
[13] Socolar J E S, Lubensky T C and Steinhardt P J 1986 Phys. Rev. B 34 3345
[14] Chatzopoulos A and Trebin H R 2010 Phys. Rev. B 81 064205
[15] Yang W G, Wang R H, Ding D H and Hu C Z 1993 Phys. Rev. B 48 6999
[16] Wang J B, Gastaldi J and Wang R H 2001 Chin. Phys. Lett. 18 88
[17] Wang J B, Mancini L, Wang R H and Gastaldi J 2003 J. Phys.: Condens. Matter 15 L363
[18] Wang J B, Yang W G and Wang R H 2003 J. Phys.: Condens. Matter 15 1599
[19] Li X F and Fan T Y 1999 Phil. Mag. A 79 1943
[20] Gao Y 2009 Phys. Lett. A 373 885
[21] Wang X F, Fan T Y and Zhu A Y 2009 Chin. Phys. B 18 709
[22] Gong P, Hu C Z, Zhou X, Wang A J and Miao L 2006 Chin. Phys. 15 2065
[23] Li L H 2010 Chin. Phys. B 19 046101
[24] Li C L and Liu Y Y 2004 Chin. Phys. 13 924
[25] Fan T Y and Fan L 2011 Chin. Phys. B 20 036102
[26] Fan T Y 2010 Mathematical Theory of Elasticity of Quasicrystals and Its Applications (Heideberg: Springer-Verlag) p. 128
[27] Dugdale D S 1960 J. Mech. Phys. Solids 8 100
[28] Li X Y, Chen W Q, Wang H Y and Wang G D 2012 Eng. Fract. Mech. 88 1
[29] Li X Y, Gu S T, He Q C and Chen W Q 2013 Math. Mech. Solids 18 246
[30] Ferdjani H 2009 Euro. J. Mech. A 28 347
[31] Li W and Xie L Y 2013 Chin. Phys. B 22 036201
[32] Xie L Y and Fan T Y 2011 J. Math. Phys. 52 053512
[33] Fan T Y and Fan L 2008 Phil. Mag. 88 523
[34] Fan T Y, Trebin H R, Messerchmidt U and Mai Y W 2004 J. Phys.: Condens. Matter 16 5229
[35] Fan T Y 2003 Foundation of Fracture Theory (Beijing: Science Press) pp. 79-80 (in Chinese)
[36] Fan T Y 1999 Mathematical Theory of Elasticity of Quasicrystals and Applications (Beijing: Beijing Institute of Technology Press) (in Chinese)
[37] Shi W C 2011 Int. J. Solids Structures 48 567
[1] Substitutions of vertex configuration of Ammann-Beenker tiling in framework of Ammann lines
Jia-Rong Ye(叶家容), Wei-Shen Huang(黄伟深), and Xiu-Jun Fu(傅秀军). Chin. Phys. B, 2022, 31(8): 086101.
[2] Non-Hermitian quasicrystal in dimerized lattices
Longwen Zhou(周龙文) and Wenqian Han(韩雯岍). Chin. Phys. B, 2021, 30(10): 100308.
[3] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[4] Anti-plane problem of nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional hexagonal piezoelectric quasicrystals
Dongsheng Yang(杨东升) and Guanting Liu(刘官厅)†. Chin. Phys. B, 2020, 29(10): 104601.
[5] Quantum anomalous Hall effect in twisted bilayer graphene quasicrystal
Zedong Li(李泽东) and Z F Wang(王征飞)†. Chin. Phys. B, 2020, 29(10): 107101.
[6] Interaction between infinitely many dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal
Guan-Ting Liu(刘官厅), Li-Ying Yang(杨丽英). Chin. Phys. B, 2017, 26(9): 094601.
[7] The interaction between a screw dislocation and a wedge-shaped crack in one-dimensional hexagonal piezoelectric quasicrystals
Li-Juan Jiang(姜丽娟), Guan-Ting Liu(刘官厅). Chin. Phys. B, 2017, 26(4): 044601.
[8] Diurnal cooling for continuous thermal sources under direct subtropical sunlight produced by quasi-Cantor structure
Jia-Ye Wu(吴嘉野), Yuan-Zhi Gong(龚远志), Pei-Ran Huang(黄培然), Gen-Jun Ma(马根骏), Qiao-Feng Dai(戴峭峰). Chin. Phys. B, 2017, 26(10): 104201.
[9] Analysis of composite material interface crack face contact and friction effects using a new node-pairs contact algorithm
Zhong Zhi-Peng (钟志鹏), He Yu-Bo (何郁波), Wan Shui (万水). Chin. Phys. B, 2014, 23(6): 064601.
[10] Icosahedral quasicrystals solids with an elliptic hole under uniform heat flow
Li Lian-He (李联和), Liu Guan-Ting (刘官厅). Chin. Phys. B, 2014, 23(5): 056101.
[11] Finite size specimens with cracks of icosahedral Al–Pd–Mn quasicrystals
Yang Lian-Zhi (杨连枝), Ricoeur Andreas, He Fan-Min (何蕃民), Gao Yang (高阳). Chin. Phys. B, 2014, 23(5): 056102.
[12] Elastic fields around a nanosized elliptichole in decagonal quasicrystals
Li Lian-He (李联和), Yun Guo-Hong (云国宏). Chin. Phys. B, 2014, 23(10): 106104.
[13] A Dugdale–Barenblatt model for a strip with a semi-infinite crack embedded in decagonal quasicrystals
Li Wu (李梧), Xie Ling-Yun (解凌云). Chin. Phys. B, 2013, 22(3): 036201.
[14] Generalized 2D problem of icosahedral quasicrystals containing an elliptic hole
Li Lian-He (李联和). Chin. Phys. B, 2013, 22(11): 116101.
[15] Elliptic hole in octagonal quasicrystals
Li Lian-He (李联和). Chin. Phys. B, 2013, 22(1): 016102.
No Suggested Reading articles found!