Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 116105    DOI: 10.1088/1674-1056/23/11/116105
SPECIAL TOPIC—Non-equilibrium phenomena in soft matters Prev   Next  

Mechanical properties of jammed packings of frictionless spheres under an applied shear stress

Liu Hao (刘浩), Tong Hua (童华), Xu Ning (徐宁)
Key Laboratory of Soft Matter Chemistry of Chinese Academy of Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  By minimizing a thermodynamic-like potential, we unbiasedly sample the potential energy landscape of soft and frictionless spheres under a constant shear stress. We obtain zero-temperature jammed states under desired shear stresses and investigate their mechanical properties as a function of the shear stress. As a comparison, we also obtain the jammed states from the quasistatic-shear sampling in which the shear stress is not well-controlled. Although the yield stresses determined by both samplings show the same power-law scaling with the compression from the jamming transition point J at zero temperature and shear stress, for finite size systems the quasistatic-shear sampling leads to a lower yield stress and a higher critical volume fraction at point J. The shear modulus of the jammed solids decreases with increasing shear stress. However, the shear modulus does not decay to zero at yielding. This discontinuous change of the shear modulus implies the discontinuous nature of the unjamming transition under nonzero shear stress, which is further verified by the observation of a discontinuous jump in the pressure from the jammed solids to the shear flows. The pressure jump decreases upon decompression and approaches zero at the critical-like point J, in analogy with the well-known phase transitions under an external field. The analysis of the force networks in the jammed solids reveals that the force distribution is more sensitive to the increase of the shear stress near point J. The force network anisotropy increases with increasing shear stress. The weak particle contacts near the average force and under large shear stresses it exhibit an asymmetric angle distribution.
Keywords:  jamming      shear      phase transition      force network  
Received:  16 June 2014      Revised:  17 September 2014      Accepted manuscript online: 
PACS:  61.43.-j (Disordered solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21325418), the National Basic Research Program of China (Grant No. 2012CB821500), the Chinese Academy of Sciences 100-Talent Program (Grant No. 2030020004), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2340000034).
Corresponding Authors:  Xu Ning     E-mail:  ningxu@ustc.edu.cn

Cite this article: 

Liu Hao (刘浩), Tong Hua (童华), Xu Ning (徐宁) Mechanical properties of jammed packings of frictionless spheres under an applied shear stress 2014 Chin. Phys. B 23 116105

[1] Liu A J and Nagel S R 1998 Nature 396 21
[2] O'ern C S, Silbert L E, Liu A J and Nagel S R 2003 Phys. Rev. E 68 011306
[3] Xu N 2011 Front. Phys. 6 109
[4] van Hecke M 2010 J. Phys.: Condens. Matter 22 033101
[5] Andrea J L and Nagel R 2010 Annu. Rev. Condens. Matter. Phys. 1 347
[6] Ikeda A, Berthier L and Sollich P 2012 Phys. Rev. Lett. 109 018301
[7] Liu H, Xie X and Xu N 2014 Phys. Rev. Lett. 112 145502
[8] Vågverg D, Valdez-Balderas D, Moore M A, Olsson P and Teitel S 2011 Phys. Rev. E 83 030303
[9] Chaudhuri P, Bethier L and Sastry S 2010 Phys. Rev. Lett. 104 165701
[10] Silbert L E, Liu A J and Nagel S R 2005 Phys. Rev. Lett. 95 098301
[11] Wyart M, Silbert L E, Nagel S R and Witten T A 2005 Phys. Rev. E 72 051306
[12] Wyart M, Nagel S R and Witten T A 2005 Europhys. Lett. 72 486
[13] Ellenbroek W G, Somfai E, van Hecke M and van Saarloos W 2006 Phys. Rev. Lett. 97 258001
[14] Olsson P and Teitel S 2007 Phys. Rev. Lett. 99 178001
[15] Hatano T 2008 Phys. Soc. Jpn. 77 123002
[16] Drocco J A, Hastings M B, Reichhardt C J O and Reichhardt C 2005 Phys. Rev. Lett. 95 088001
[17] Ozawa M, Kuroiwa T, Ikeda A and Miyazaki K 2012 Phys. Rev. Lett. 109 205701
[18] Tighe B P,Woldhuis E, Remmers J J C, van SaarloosWand van Hecke M 2010 Phys. Rev. Lett. 105 088303
[19] Durian D J 1995 Phys. Rev. Lett. 75 4780
[20] Xu N, Vitelli V, Wyart M, Liu A J and Nagel S R 2009 Phys. Rev. Lett. 102 038001
[21] Vitelli V, Xu N, Wyart M, Liu A J and Nagel S R 2010 Phys. Rev. E 81 021301
[22] Zhao C, Tian K and Xu N 2011 Phys. Rev. Lett. 106 125503
[23] Keys A S, Abate A R, Glotzer S C and Durian D J 2007 Nat. Phys. 3 260
[24] Head D A 2009 Phys. Rev. Lett. 102 138001
[25] Heussinger C and Barrat J L 2009 Phys. Rev. Lett. 102 218303
[26] Jaeger H M, Nagel S R and Behringer R P 1996 Rev. Mod. Phys. 68 1259
[27] O'Hern C S, Langer S A, Liu A J and Nagel S R 2002 Phys. Rev. Lett. 88 075507
[28] Corwin E I, Jaeger H M and Nagel S R 2005 Nature 435 1075
[29] Mueth D M, Jaeger H M and Nagel S R 1998 Phys. Rev. E 57 3164
[30] Blair D L, Mueggenburg N W, Marshall A H, Jaeger H M and Nagel S R 2001 Phys. Rev. E 63 041304
[31] Radjai F,Wolf D E, Jean M and Moreau J J 1998 Phys. Rev. Lett. 80 61
[32] Majmudar T S and Behringer R P 2005 Nature 435 1079
[33] Radjai F, Roux S and Moreau J J 1999 Chaos 9 544
[34] Malandro D L and Lacks D J 1999 J. Chem. Phys. 110 4593
[35] Maloney C E and Lemaître A L 2006 Phys. Rev. E 74 016118
[36] Tanguy A, Leonforte F and Barrat J L 2006 Eur. Phys. J. E 20 355
[37] Heussinger C, Chaudhuri P and Barrat J L 2010 Soft Matter 6 3050
[38] Andreotti B, Barrat J L and Heussinger C 2012 Phys. Rev. Lett. 109 105901
[39] Allen M P and Tildesley D J 1987 Computer Simulation of Liquids (Oxford: Clarendon Press)
[40] Bitzek E, Koskinen P, Gähler F, MoselerMand Gumbsch P 2006 Phys. Rev. Lett. 97 170201
[41] Larson R G 1999 The Structure and Rheology of Complex Fulids (Oxford: Oxford University Press)
[42] Xu N and O'Hern C S 2006 Phys. Rev. E 73 061303
[43] Coussot P, Nguyen Q D, Huynh H T and Bonn D 2002 Phys. Rev. Lett. 88 175501
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[6] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[7] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[8] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[9] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[12] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[13] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[14] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[15] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
No Suggested Reading articles found!