Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 110601    DOI: 10.1088/1674-1056/23/11/110601
GENERAL Prev   Next  

Enhancing the precision of phase estimation by weak measurement and quantum measurement reversal

He Zhi (贺志), Yao Chun-Mei (姚春梅)
College of Physics and Electronics, Hunan University of Arts and Science, Changde 415000, China
Abstract  The enhancement of the precision of phase estimation in quantum metrology is investigated by employing weak measurement (WM) and quantum measurement reversal (QMR). We derive the exact expressions of the optimal quantum Fisher information (QFI) and success probability of phase estimation for an exactly solving model consisting of a qubit interacting with a structured reservoir. We show that the QFI can be obviously enhanced by means of the WM and QMR in different regimes. In addition, we also show that the magnitude of the decoherence involved in the WM and QMR can be a general complex number, which extends the applicable scope of the WM and QMR approach.
Keywords:  precision of phase estimation      quantum fisher information      weak measurement      quantum measurement reversal  
Received:  06 March 2014      Revised:  10 May 2014      Accepted manuscript online: 
PACS:  06.20.-f (Metrology)  
  42.25.Hz (Interference)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grants No. 11247294), the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 12C0826), the Doctor Foundation Startup from Hunan University of Arts and Science, China (Grant No. 13101039), the Key Laboratory of Photoelectricity Information Integration and Optics Manufacture Technology in Hunan Province, China, and the Construct Program of the Key Discipline in Hunan University of Arts and Science (Optics), China.
Corresponding Authors:  He Zhi     E-mail:  hz9209@126.com

Cite this article: 

He Zhi (贺志), Yao Chun-Mei (姚春梅) Enhancing the precision of phase estimation by weak measurement and quantum measurement reversal 2014 Chin. Phys. B 23 110601

[1] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[2] Fisher R A 1929 Proc. Cambridge Phil. Soc. 22 700
[3] Bollinger J J, Itano W M, Wineland D J and Heinzen D J 1996 Phys. Rev. A 54 4649
[4] Huelga S F, Macchiavello C, Pellizzari T and Ekert A K 1997 Phys. Rev. Lett. 79 3865
[5] Pezze L and Smerzi A 2009 Phys. Rev. Lett. 102 100401
[6] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photonics 5 222
[7] Chin A W, Huelga S F and Plenio M B 2012 Phys. Rev. Lett. 109 233601
[8] Hyllus H, Laskowski W, Krischek R, Schwemmer C, Wieczorek W, Weinfurter H, Pezze L and Smerzi A 2012 Phys. Rev. A 85 022321
[9] Facchi P, Lidar D A and Pascazio S 2004 Phys. Rev. A 69 032314
[10] Maniscalco S, Francica F, Zaffino R L, Lo Gullo N and Plastina F 2008 Phys. Rev. Lett. 100 090503
[11] Zanardi P and Rasetti M 1997 Phys. Rev. Lett. 79 3306
[12] Lidar D A, Chuang I L and Whaley K B 1998 Phys. Rev. Lett. 81 2594
[13] Wang Y M, Zhou Y L, Liang L M and Li C Z 2009 Chin. Phys. Lett. 26 100304
[14] Shao X Q, Zhao Y F, Zhang S and Chen Li 2009 Chin. Phys. B 18 5161
[15] Calderbank A R and Shor P W 1996 Phys. Rev. A 54 1098
[16] Knill E and Laflamme R 1997 Phys. Rev. A 55 900
[17] Wu S, Liang L M and Li C Z 2007 Chin. Phys. 16 1229
[18] Viola L and Lloyd S 1998 Phys. Rev. A 58 2733
[19] Uhrig G S 2007 Phys. Rev. Lett. 98 100504
[20] Bellomo B, Lo Franco R and Compagno G 2007 Phys. Rev. Lett. 99 160502
[21] Xu J S, Li C F, Gong M, Zou X B, Shi C H, Chen G and Guo G C 2010 Phys. Rev. Lett. 104 100502
[22] Zhang Y J, Man Z X and Xia Y J 2009 Eur. Phys. J. D 55 173
[23] He Z, Zou J, Shao B and Kong S Y 2010 J. Phys. B: At. Mol. Opt. Phys. 43 115503
[24] Shan C J, Liu J B, Chen T, Liu T K, Huang Y X and Li H 2010 Chin. Phys. Lett. 27 100301
[25] Huang L Y and Fang M F 2010 Chin. Phys. B 19 090318
[26] Ding B F, Wang X Y, Tang Y F, Mi X W and Zhao H P 2011 Chin. Phys. B 20 060304
[27] Han W, Zhang Y J and Xia Y J 2013 Chin. Phys. B 22 010306
[28] Xue P and Zhang Y S 2013 Chin. Phys. B 22 070302
[29] Sun Z, Ma J, Lu X M and Wang X 2010 Phys. Rev. A 82 022306
[30] Ma J, Huang Y X, Wang X and Sun C P 2011 Phys. Rev. A 84 022302
[31] Zhong W, Sun Z, Ma J, Wang X and Nori F 2013 Phys. Rev. A 87 022337
[32] Xiang G Y, Higgins B L, Berry D W, Wiseman H M and Pryde G J 2011 Nat. Photonics 5 43
[33] Zhang L J and Xiao M 2013 Chin. Phys. B 22 110310
[34] Berrada K 2013 Phys. Rev. A 88 035806
[35] Watanable Y, Sagawa T and Ueda M 2010 Phys. Rev. Lett. 104 020401
[36] Tan Q S, Huang Y, Yin X, Kuang L M and Wang X 2013 Phys. Rev. A 87 032102
[37] Liu J, Jing X and Wang X 2013 Phys. Rev. A 88 042316
[38] Knee G C, Briggs G A D, Benjamin S C and Gauger E M 2013 Phys. Rev. A 87 012115
[39] Tanaka S and Yamamoto N 2013 Phys. Rev. A 88 042116
[40] Ferrie C and Combes J 2013 arXiv:1306.6321v1
[41] Combes J, Ferrie C, Jiang Z and Caves C M 2013 arXiv:1309.6620v1
[42] Zhang L, Datta A and Walmsley I A 2013 varXiv:1310.5302v1
[43] Aharonov Y, Albert D Z and Vaidman L 1988 Phys. Rev. Lett. 60 1351
[44] Korotkov A N 1999 Phys. Rev. B 60 5737
[45] Kim Y S, Cho Y W, Ra Y S and Kim Y H 2009 Opt. Express 17 11978
[46] Lee J C, Jeong Y C, Kim Y S and Kim Y H 2011 Opt. Express 19 16309
[47] Sun Q, Al-Amri M, Davidovich L and Zubairy M S 2010 Phys. Rev. A 82 052323
[48] Kim Y S, Lee J C, Kwon O and Kim Y H 2012 Nat. Phys. 8 117
[49] Man Z X, Xia Y J and An N B 2012 Phys. Rev. A 86 012325
[50] Xiao X and Li Y L 2013 Eur. Phys. J. D 67 204
[51] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[52] Yao C, Ma Z H, Chen Z H and Serafini A 2012 Phys. Rev. A 86 022312
[53] Ota Y, Ashhab S and Nori F 2012 J. Phys. A: Math. Theor. 45 415303
[54] Pramanik T and Majumdar A S 2013 Phys. Lett. A 377 3209
[55] He Z, Yao C and Zou J 2013 Phys. Rev. A 88 044304
[56] Lu X M, Wang X and Sun C P 2010 Phys. Rev. A 82 042103
[57] Giovannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401
[58] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[59] Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1
[60] Holland M J and Burnett K 1993 Phys. Rev. Lett. 71 1355
[61] Higgins B L, Berry D W, Bartlett S D, Wiseman H M and Pryde G J 2007 Nature 450 393
[1] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[2] Environmental parameter estimation with the two-level atom probes
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2022, 31(5): 050304.
[3] Increasing the efficiency of post-selection in direct measurement of the quantum wave function
Yong-Li Wen(温永立), Shanchao Zhang(张善超), Hui Yan(颜辉), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2022, 31(3): 034206.
[4] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[5] Parameter accuracy analysis of weak-value amplification process in the presence of noise
Jiangdong Qiu(邱疆冬), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Lan Luo(罗兰), Yu He(何宇), Changliang Ren(任昌亮), Zhiyou Zhang(张志友), and Jinglei Du(杜惊雷). Chin. Phys. B, 2021, 30(6): 064216.
[6] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[7] Dense coding capacity in correlated noisy channels with weak measurement
Jin-Kai Li(李进开), Kai Xu(徐凯), and Guo-Feng Zhang(张国锋). Chin. Phys. B, 2021, 30(11): 110302.
[8] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[9] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[10] Extended validity of weak measurement
Jiangdong Qiu(邱疆冬), Changliang Ren(任昌亮), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Yu He(何宇), Zhiyou Zhang(张志友), Jinglei Du(杜惊雷). Chin. Phys. B, 2020, 29(6): 064214.
[11] Effect of system-reservoir correlations on temperature estimation
Wen-Li Zhu(朱雯丽), Wei Wu(吴威), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(2): 020501.
[12] Optimal parameter estimation of open quantum systems
Yinghua Ji(嵇英华), Qiang Ke(柯强), and Juju Hu(胡菊菊). Chin. Phys. B, 2020, 29(12): 120303.
[13] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[14] Effect of weak measurement on quantum correlations
L Jebli, M Amzioug, S E Ennadifi, N Habiballah, and M Nassik$. Chin. Phys. B, 2020, 29(11): 110301.
[15] Quantum metrology with a non-Markovian qubit system
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴). Chin. Phys. B, 2018, 27(12): 120301.
No Suggested Reading articles found!