Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 110502    DOI: 10.1088/1674-1056/23/11/110502
GENERAL Prev   Next  

Static and adaptive feedback control for synchronization of different chaotic oscillators with mutually Lipschitz nonlinearities

Muhammad Riaza b, Muhammad Rehana, Keum-Shik Hongc, Muhammad Ashrafb, Haroon Ur Rasheeda
a Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan;
b Department of Electronics Engineering, Mohammad Ali Jinnah University, Islamabad, Pakistan;
c Department of Cogno-Mechatronics Engineering and School of Mechanical Engineering, Pusan National University; 2 Busandaehak-ro, Geumjeong-gu, Busan 609-735, Republic of Korea
Abstract  This paper addresses the control law design for synchronization of two different chaotic oscillators with mutually Lipschitz nonlinearities. For analysis of the properties of two different nonlinearities, an advanced mutually Lipschitz condition is proposed. This mutually Lipschitz condition is more general than the traditional Lipschitz condition. Unlike the latter, it can be used for the design of a feedback controller for synchronization of chaotic oscillators of different dynamics. It is shown that any two different Lipschitz nonlinearities always satisfy the mutually Lipschitz condition. Applying the mutually Lipschitz condition, a quadratic Lyapunov function and uniformly ultimately bounded stability, easily designable and implementable robust control strategies utilizing algebraic Riccati equation and linear matrix inequalities, are derived for synchronization of two distinct chaotic oscillators. Furthermore, a novel adaptive control scheme for mutually Lipschitz chaotic systems is established by addressing the issue of adaptive cancellation of unknown mismatch between the dynamics of different chaotic systems. The proposed control technique is numerically tested for synchronization of two different chaotic Chua's circuits and for obtaining identical behavior between the modified Chua's circuit and the Rössler system.
Keywords:  control theory and feedback      synchronization      mutually Lipschitz nonlinearity      adaptive control system  
Received:  18 March 2014      Revised:  05 May 2014      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  87.19.lr.  
Fund: Project supported by the Higher Education Commission of Pakistan through the Indigenous 5000 Ph.D. Fellowship Program (Phase Ⅱ, Batch Ⅱ).
Corresponding Authors:  Muhammad Rehan     E-mail:  rehanqau@gmail.com

Cite this article: 

Muhammad Riaz, Muhammad Rehan, Keum-Shik Hong, Muhammad Ashraf, Haroon Ur Rasheed Static and adaptive feedback control for synchronization of different chaotic oscillators with mutually Lipschitz nonlinearities 2014 Chin. Phys. B 23 110502

[1] Arenas A, Diaz-Guilera A, Kurths J, Moreno Y and Zhou C 2008 Phys. Rep. 469 93
[2] Jin X Z and Yang G H 2013 Commun. Nonlinear Sci. Numer. Simul. 18 316
[3] Cao J and Wan Y 2014 Neural Netw. 53 165
[4] Zhang F F, Liu S T and Yu W Y 2013 Chin. Phys. B 22 120505
[5] Lu J Q and Cao J 2007 Physica A 382 672
[6] Zhang L, Yang X L and Sun Z K 2013 Acta Phys. Sin. 62 240502 (in Chinese)
[7] Grassi G 2013 Chin. Phys. B 22 080505
[8] Zang H Y, Min L Q, Zhao G and Chen G R 2013 Chin. Phys. Lett. 30 040502
[9] Wang B, Shi P, Karimi H R, Song Y D and Wang J 2013 Nonlinear Anal. Real World Appl. 14 1487
[10] Rehan M and Hong K S 2011 Phys. Lett. A 375 1666
[11] Yang C C and Ou C J 2013 Commun. Nonlinear Sci. Numer. Simul. 18 682
[12] An X L, Yu J N, Li Y Z, Chu Y D, Zhang J G and Li X F 2011 Math. Comput. Model. 54 7
[13] Zhang L F, An X L and Zhang J G 2013 Nonlinear Dyn. 73 705
[14] Cao J D, Ho D W C and Yang Y Q 2009 Phys. Lett. A 373 3128
[15] Liu S and Chen L Q 2013 Chin. Phys. B 22 100506
[16] Lu L, Yu M, Wei L L, Zhang M and Li Y S 2012 Chin. Phys. B 21 100507
[17] Yan S L 2013 Acta Phys. Sin. 62 230504 (in Chinese)
[18] Cao J D and Lu J Q 2006 Chaos 16 013133
[19] Li J P, Yu L C, Yu M C and Chen Y 2012 Chin. Phys. Lett. 29 050501
[20] Volos C K, Kyprianidis I M and Stouboulos I N 2013 Signal Process. 93 1328
[21] Nguyen L H and Hong K S 2011 Math. Comput. Simul. 82 590
[22] Rehan M and Hong K S 2012 Comput. Math. Method Med. 2012 230980
[23] Nguyen L H and Hong K S 2013 Appl. Math. Model. 37 2460
[24] Salarieh H and Alasty A 2008 Math. Comput. Simulat. 79 233
[25] Sanchez E N and Ricalde L J 2003 Neural Netw. 16 711
[26] Chen C S 2009 Expert Syst. Appl. 36 11827
[27] Lin T C, Chen M C and Roopaei M 2011 Eng. Appl. Artif. Intell. 24 39
[28] Vincent U E and Guo R 2011 Phys. Lett. A 375 2322
[29] Lu J Q and Cao J D 2005 Chaos 15 043901
[30] Park J H, Ji D H, Won S C and Lee S M 2008 Appl. Math. Comput. 204 170
[31] Ji D H, Park J H and Won S C 2009 Phys. Lett. A 373 1044
[32] Yin C, Zhong S M and Chen W F 2011 Nonlinear Anal. Real World Appl. 12 501
[33] Rehan M 2013 Appl. Math. Model. 37 6829
[34] El-Gohary A 2006 Chaos Soliton. Fract. 27 345
[35] Zhang H G, Huang W, Wang Z L and Chai T Y 2006 Phys. Lett. A 350 363
[36] Li S, Xu W and Li R 2007 Phys. Lett. A 361 98
[37] Luo Y P and Hung Y C 2013 Nonlinear Dyn. 73 1507
[38] Zhang R and Yang S 2013 Nonlinear Dyn. 71 269
[39] Kebriaei H and Yazdanpanah M J 2010 Commun. Nonlinear Sci. Numer. Simul. 15 430
[40] Aghababa M P and Heydari A 2012 Appl. Math. Model. 36 1639
[41] Si G, Sun Z, Zhang Y and Chen W 2012 Nonlinear Anal. Real World Appl. 13 1761
[42] Cheng C J and Cheng C B 2013 Commun. Nonlinear Sci. Numer. Simul. 18 2825
[43] Pertew A M, Marquez H J and Zhao Q 2007 Automatica 43 1464
[44] Ekramian M, Sheikholeslam F, Hosseinnia S and Yazdanpanah M J 2013 Syst. Control Lett. 62 319
[45] Rehan M and Hong K S 2013 Plos One 8 e62888
[46] Chen F and Zhang W 2007 Nonlinear Anal. Theory Method. Appl. 67 3384
[47] Yu W W and Cao J D 2007 Physica A 373 252
[48] Hao F and Wang L 2007 Nonlinear Anal. Hybrid Syst. 1 297
[49] Rehan M and Hong K S 2013 Nonlinear Dyn. 73 1955
[50] Gao Z and Ding S X 2007 Automatica 43 912
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[4] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[5] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[6] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[7] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[8] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[9] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[10] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[11] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
[12] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[13] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[14] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[15] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
No Suggested Reading articles found!