|
|
Hybrid double-dot qubit measurement with a quantum point contact |
Yan Lei (严蕾), Yin Wen (殷雯), Wang Fang-Wei (王芳卫) |
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We present the measurement of a hybrid double-dot qubit using a quantum point contact (QPC). To study the dynamics, we derive the rate equations of the entire system. Numerical results show that QPC current can directly reflect the evolution of the qubit. By adjusting Coulomb interaction, energy mismatch, and QPC tunneling rate, the efficiency and dephasing time can be improved. In addition, the initial state with a hybrid triplet state is superior to that with the purely triplet states on the efficiency. Moreover, the decoherence time is estimated on the magnitude of a microsecond, long enough to implement quantum operations.
|
Received: 30 April 2014
Revised: 19 May 2014
Accepted manuscript online:
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
73.63.Kv
|
(Quantum dots)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174358) and the National Basic Research Program of China (Grant No. 2010CB833102). |
Corresponding Authors:
Yin Wen
E-mail: wenyin@aphy.iphy.ac.cn
|
About author: 03.65.Yz; 03.67.Lx; 73.63.Kv |
Cite this article:
Yan Lei (严蕾), Yin Wen (殷雯), Wang Fang-Wei (王芳卫) Hybrid double-dot qubit measurement with a quantum point contact 2014 Chin. Phys. B 23 100303
|
|
| [1] | Kane B E 1998 Nature 393 133
|
|
| [2] | Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
|
|
| [3] | ClarkeEur M L 2014 J. Phys. 35 015021
|
|
| [4] | DiVincenzo D P 2000 Fortschr. Phys. 48 771
|
|
| [5] | Mozyrsky D and Martin I 2002 Phys. Rev. Lett. 89 018301
|
|
| [6] | Goan H S, Milburn G J, Wiseman H M and Sun H B 2001 Phys. Rev. B 63 125326
|
|
| [7] | Gurvitz S A 2005 Phys. Rev. B 72 073303
|
|
| [8] | Gilad T and Gurvitz S A 2006 Phys. Rev. Lett. 97 116806
|
|
| [9] | Goan H S and Milburn G J 2001 Phys. Rev. B 64 235307
|
|
| [10] | Elzerman J M, Hanson R, van Willems, Beveren L H, Witkamp B, Vandersypen L M K and Kouwenhoven L P 2004 Nature 430 431
|
|
| [11] | Johnson A C, Petta J R, Taylor J M, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Nature 435 925
|
|
| [12] | Petersson K D, Smith C G, Anderson D, Atkinson P, Jones G A C and Ritchie D A 2010 Nano Lett. 10 2789
|
|
| [13] | Shi Z, Simmons C B, Prance J R, Gamble J K, Koh T S, Shim Y P, Hu X, Savage D E, Lagally M G, Eriksson M A, Friesen M and Coppersmith S N 2012 Phys. Rev. Lett. 108 140503
|
|
| [14] | Dial O E, Shulman M D, Harvey S P, Bluhm H, Umansky V and Yacoby A 2013 Phys. Rev. Lett. 110 146804
|
|
| [15] | DiVincenzo D P, Bacon D, Kempe J, Burkard G and Whaley K B 2000 Nature 408 339
|
|
| [16] | Gurvitz S A and Prager Ya S 1996 Phys. Rev. B 53 15932
|
|
| [17] | Gurvitz S A 1997 Phys. Rev. B 56 15215
|
|
| [18] | Blanter Ya M and Büttiker M 2000 Phys. Rep. 336 1
|
|
| [19] | MacDonald D K C 1948 Rep. Prog. Phys. 12 56
|
|
| [20] | Mozyrsky D, Fedichkin L, Gurvitz S A and Berman G P 2002 Phys. Rev. B 66 161313
|
|
| [21] | Hanson R, van Beveren L H W, Vink I T, Elzerman J M, Naber W J M, Koppens F H L, Kouwenhoven L P and Vandersypen L M K 2005 Phys. Rev. Lett. 94 196802
|
|
| [22] | Luo J Y, Li X Q and Yan Y J 2007 Phys. Rev. B 76 085325
|
|
| [23] | Korotkov A N 2001 Phys. Rev. B 63 085312
|
|
| [24] | Lambert N and Nori F 2008 Phys. Rev. B 78 214302
|
|
| [25] | Elattari B and Gurvitz S A 2002 Phys. Lett. A 292 289
|
|
| [26] | Bennett C H 1995 Phys. Today 48 24
|
|
| [27] | Korotkov A N and Averin D V 2001 Phys. Rev. B 64 165310
|
|
| [28] | Elattari B and Gurvitz S A 2000 Phys. Rev. A 62 032102
|
|
| [29] | Lundeen J S and Bamber C 2012 Phys. Rev. Lett. 108 070402
|
|
| [30] | Gustavsson S, Studer M, Leturcq R, Ihn T, Ensslin K, Driscoll D C and Gossard A C 2007 Phys. Rev. Lett. 99 206804
|
|
| [31] | Gamble J K, Friesen M, Coppersmith S N and Hu X 2012 Phys. Rev. B 86 035302
|
|
| [32] | Petersson K D, Petta J R, Lu H and Gossard A C 2010 Phys. Rev. Lett. 105 246804
|
|
| [33] | Yan L, Wang H X, Yin W and Wang F W 2014 Chin. Phys. B 23 020305
|
|
| [34] | Cassidy M C, Dzurak A S, Clark R G, Petersson K D, Farrer I, Ritchie D A and Smith C G 2007 Appl. Phys. Lett. 91 222104
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|