Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 100303    DOI: 10.1088/1674-1056/23/10/100303
GENERAL Prev   Next  

Hybrid double-dot qubit measurement with a quantum point contact

Yan Lei (严蕾), Yin Wen (殷雯), Wang Fang-Wei (王芳卫)
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We present the measurement of a hybrid double-dot qubit using a quantum point contact (QPC). To study the dynamics, we derive the rate equations of the entire system. Numerical results show that QPC current can directly reflect the evolution of the qubit. By adjusting Coulomb interaction, energy mismatch, and QPC tunneling rate, the efficiency and dephasing time can be improved. In addition, the initial state with a hybrid triplet state is superior to that with the purely triplet states on the efficiency. Moreover, the decoherence time is estimated on the magnitude of a microsecond, long enough to implement quantum operations.
Keywords:  measurement      dynamics      dephasing  
Received:  30 April 2014      Revised:  19 May 2014      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Lx (Quantum computation architectures and implementations)  
  73.63.Kv (Quantum dots)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174358) and the National Basic Research Program of China (Grant No. 2010CB833102).
Corresponding Authors:  Yin Wen     E-mail:  wenyin@aphy.iphy.ac.cn
About author:  03.65.Yz; 03.67.Lx; 73.63.Kv

Cite this article: 

Yan Lei (严蕾), Yin Wen (殷雯), Wang Fang-Wei (王芳卫) Hybrid double-dot qubit measurement with a quantum point contact 2014 Chin. Phys. B 23 100303

[1]Kane B E 1998 Nature 393 133
[2]Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[3]ClarkeEur M L 2014 J. Phys. 35 015021
[4]DiVincenzo D P 2000 Fortschr. Phys. 48 771
[5]Mozyrsky D and Martin I 2002 Phys. Rev. Lett. 89 018301
[6]Goan H S, Milburn G J, Wiseman H M and Sun H B 2001 Phys. Rev. B 63 125326
[7]Gurvitz S A 2005 Phys. Rev. B 72 073303
[8]Gilad T and Gurvitz S A 2006 Phys. Rev. Lett. 97 116806
[9]Goan H S and Milburn G J 2001 Phys. Rev. B 64 235307
[10]Elzerman J M, Hanson R, van Willems, Beveren L H, Witkamp B, Vandersypen L M K and Kouwenhoven L P 2004 Nature 430 431
[11]Johnson A C, Petta J R, Taylor J M, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Nature 435 925
[12]Petersson K D, Smith C G, Anderson D, Atkinson P, Jones G A C and Ritchie D A 2010 Nano Lett. 10 2789
[13]Shi Z, Simmons C B, Prance J R, Gamble J K, Koh T S, Shim Y P, Hu X, Savage D E, Lagally M G, Eriksson M A, Friesen M and Coppersmith S N 2012 Phys. Rev. Lett. 108 140503
[14]Dial O E, Shulman M D, Harvey S P, Bluhm H, Umansky V and Yacoby A 2013 Phys. Rev. Lett. 110 146804
[15]DiVincenzo D P, Bacon D, Kempe J, Burkard G and Whaley K B 2000 Nature 408 339
[16]Gurvitz S A and Prager Ya S 1996 Phys. Rev. B 53 15932
[17]Gurvitz S A 1997 Phys. Rev. B 56 15215
[18]Blanter Ya M and Büttiker M 2000 Phys. Rep. 336 1
[19]MacDonald D K C 1948 Rep. Prog. Phys. 12 56
[20]Mozyrsky D, Fedichkin L, Gurvitz S A and Berman G P 2002 Phys. Rev. B 66 161313
[21]Hanson R, van Beveren L H W, Vink I T, Elzerman J M, Naber W J M, Koppens F H L, Kouwenhoven L P and Vandersypen L M K 2005 Phys. Rev. Lett. 94 196802
[22]Luo J Y, Li X Q and Yan Y J 2007 Phys. Rev. B 76 085325
[23]Korotkov A N 2001 Phys. Rev. B 63 085312
[24]Lambert N and Nori F 2008 Phys. Rev. B 78 214302
[25]Elattari B and Gurvitz S A 2002 Phys. Lett. A 292 289
[26]Bennett C H 1995 Phys. Today 48 24
[27]Korotkov A N and Averin D V 2001 Phys. Rev. B 64 165310
[28]Elattari B and Gurvitz S A 2000 Phys. Rev. A 62 032102
[29]Lundeen J S and Bamber C 2012 Phys. Rev. Lett. 108 070402
[30]Gustavsson S, Studer M, Leturcq R, Ihn T, Ensslin K, Driscoll D C and Gossard A C 2007 Phys. Rev. Lett. 99 206804
[31]Gamble J K, Friesen M, Coppersmith S N and Hu X 2012 Phys. Rev. B 86 035302
[32]Petersson K D, Petta J R, Lu H and Gossard A C 2010 Phys. Rev. Lett. 105 246804
[33]Yan L, Wang H X, Yin W and Wang F W 2014 Chin. Phys. B 23 020305
[34]Cassidy M C, Dzurak A S, Clark R G, Petersson K D, Farrer I, Ritchie D A and Smith C G 2007 Appl. Phys. Lett. 91 222104
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[3] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[4] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[5] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[6] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[7] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[8] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[9] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[10] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[11] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[12] Effects of adjacent bubble on spatiotemporal evolutions of mechanical stresses surrounding bubbles oscillating in tissues
Qing-Qin Zou(邹青钦), Shuang Lei(雷双), Zhang-Yong Li(李章勇), and Dui Qin(秦对). Chin. Phys. B, 2023, 32(1): 014302.
[13] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[14] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[15] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
No Suggested Reading articles found!