Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 100302    DOI: 10.1088/1674-1056/23/10/100302
GENERAL Prev   Next  

Relative ordering of square-norm distance correlations in open quantum systems

Wu Tao (吴韬)a, Song Xue-Ke (宋学科)b, Ye Liu (叶柳)b
a School of Physics & Electronics Engineering, Fuyang Teachers College, Fuyang 236037, China;
b School of Physics & Material Science, Anhui University, Hefei 230039, China
Abstract  We investigate the square-norm distance correlation dynamics of the Bell-diagonal states under different local decoherence channels, including phase flip, bit flip, and bit-phase flip channels by employing the geometric discord (GD) and its modified geometric discord (MGD), as the measures of the square-norm distance correlations. Moreover, an explicit comparison between them is made in detail. The results show that there is no distinct dominant relative ordering between them. Furthermore, we obtain that the GD just gradually deceases to zero, while MGD initially has a large freezing interval, and then suddenly changes in evolution. The longer the freezing interval, the less the MGD is. Interestingly, it is shown that the dynamic behaviors of the two geometric discords under the three noisy environments for the Werner-type initial states are the same.
Keywords:  decoherence      geometric discord      modified geometric discord      trace distance correlation  
Received:  15 December 2013      Revised:  03 April 2014      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074002 and 61275119) and the Natural Science Research Project of Education Department of Anhui Province, China (Grant No. KJ2013A205).
Corresponding Authors:  Wu Tao     E-mail:  wutaofuyang@126.com
About author:  03.65.Ta; 03.65.Yz; 03.67.Lx

Cite this article: 

Wu Tao (吴韬), Song Xue-Ke (宋学科), Ye Liu (叶柳) Relative ordering of square-norm distance correlations in open quantum systems 2014 Chin. Phys. B 23 100302

[33]Li B, Wang Z X and Fei S M 2011 Phys. Rev. A 83 022321
[1]Orimo A, Masuda K, Honda S, Benten H, Ito S, Ohkita H and Tsuji H 2010 Appl. Phys. Lett. 96 43305
[34]Maziero J, Céleri L C, Serra R M and Vedral V 2009 Phys. Rev. A 80 044102
[2]Yang B, Tsai M, Cheng W, Chen J, Hsu S L and Chou W 2013 J. Phys. Chem. C 117 14472
[35]Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B and Guo G C 2010 Nat. Commun. 1 7
[3]Watts B, Belcher W J, Thomsen L, Ade H and Dastoor P C 2009 Macromolecules 42 8392
[36]Werlang T, Souza S, Fanchini F F and VillasBoas C J 2009 Phys. Rev. A 80 024103
[4]Xu Z, Chen L M, Yang G W, Huang C H, Hou J H, Wu Y, Li G, Hsu C S and Yang Y 2009 Adv. Funct. Mater. 19 1227
[37]Hao X, Ma C L and Sha J Q 2010 J. Phys. A: Math. Theor. 43 425302
[5]Oklobia O and Shafai T S 2013 Sol. Energy Mater. Sol. Cells 117 1
[6]Lee J K, Ma W L, Brabec C J, Yuen J, Moon J S, Kim J Y, Lee K, Bazan G C and Heeger A J 2008 J. Am. Chem. Soc. 130 3619
[38]Fanchini F F, Werlang T, Brasil C A, Arruda L G E and Caldeira A O 2010 Phys. Rev. A 81 052107
[7]Yu X, Hu Z Y, Huang Z H, Yu X M, Zhang J J, Zhao G S and Zhao Y 2013 Chin. Phys. B 22 118801
[39]Salles A, de Melo F, Almeida M P, Hor-Meyll M, Walborn S P, Souto Ribeiro P H and Davidovich L 2008 Phys. Rev. A 78 022322
[8]ReeseM O, WhiteM S, Rumbles G, Ginley D S and Shaheen S E 2008 Appl. Phys. Lett. 92 53307
[40]Lindblad G 1991 Quantum Entropy and Quantum Measurement, in Quantum Aspects of Optical Communications, Leture Notes in Physics (Berlin: Springer) Vol. 378, pp. 71-80
[1] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[2] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[3] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[4] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[5] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[6] The effect of phase fluctuation and beam splitter fluctuation on two-photon quantum random walk
Zijing Zhang(张子静), Feng Wang(王峰), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2020, 29(2): 020503.
[7] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[8] A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in neurons
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新). Chin. Phys. B, 2019, 28(4): 048701.
[9] Physics of quantum coherence in spin systems
Maimaitiyiming Tusun(麦麦提依明·吐孙), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(2): 024204.
[10] Boundary states for entanglement robustness under dephasing and bit flip channels
Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2019, 28(10): 100302.
[11] Enhancing von Neumann entropy by chaos in spin-orbit entanglement
Chen-Rong Liu(刘郴荣), Pei Yu(喻佩), Xian-Zhang Chen(陈宪章), Hong-Ya Xu(徐洪亚), Liang Huang(黄亮), Ying-Cheng Lai(来颖诚). Chin. Phys. B, 2019, 28(10): 100501.
[12] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[13] Classical-driving-assisted coherence dynamics and its conservation
De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(6): 060304.
[14] Decoherence of macroscopic objects from relativistic effect
Guo-Hui Dong(董国慧), Yu-Han Ma(马宇翰), Jing-Fu Chen(陈劲夫), Xin Wang(王欣), Chang-Pu Sun(孙昌璞). Chin. Phys. B, 2018, 27(10): 100301.
[15] Non-Gaussianity dynamics of two-mode squeezed number states subject to different types of noise based on cumulant theory
Shaohua Xiang(向少华), Xixiang Zhu(朱喜香), Kehui Song(宋克慧). Chin. Phys. B, 2018, 27(10): 100305.
No Suggested Reading articles found!