Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 098803    DOI: 10.1088/1674-1056/22/9/098803
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Numerical simulation of a triple-junction thin-film solar cell based on μc-Si1-xGex:H

Huang Zhen-Hua (黄振华), Zhang Jian-Jun (张建军), Ni Jian (倪牮), Cao Yu (曹宇), Hu Zi-Yang (胡子阳), Li Chao (李超), Geng Xin-Hua (耿新华), Zhao Ying (赵颖)
Institute of Photo-electronics Thin Film Devices and Technique, Nankai University, Tianjin 300071, China; Key Laboratory of Photo-electronics Thin Film Devices and Technique, Tianjin 300071, China; Key Laboratory of Photo-electronic Information Science and Technology of Ministry of Education, Nankai University, Tianjin 300071, China
Abstract  In this paper, a-Si:H/a-SiGe:H/μc-SiGe:H triple-junction solar cell structure is proposed. By the analyses of microelectronic and photonic structures (AMPS-1D) and our TRJ-F/TRJ-M/TRJ-B tunneling-recombination junction (TRJ) model, the most preferably combined bandgap for this structure is found to be 1.85 eV/1.50 eV/1.0 eV. Using more realistic material properties, optimized thickness combination is investigated. Along this direction, a-Si:H/a-SiGe:H/μc-SiGe:H triple cell with an initial efficiency of 12.09% (Voc=2.03 V, FF=0.69, Jsc=8.63 mA/cm2, area=1 cm2) is achieved in our laboratory.
Keywords:  a-Si:H/a-SiGe:H/μc-SiGe:H      triple-junction solar cell      simulation      analyses of microelectronic and photonic structures (AMPS-1D)  
Received:  01 December 2012      Revised:  26 February 2013      Accepted manuscript online: 
PACS:  88.40.jp (Multijunction solar cells)  
  88.50.gj (Modeling, design)  
  71.15.Ap (Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.))  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00705, 2011CBA00706, and 2011CBA00707), the Natural Science Foundation of Tianjin City, China (Grant No. 12JCQNJC01000), and the Fundamental Research Funds for the Central Universities of China (Grant No. 65012371).
Corresponding Authors:  Zhang Jian-Jun     E-mail:  jjzhang@nankai.edu.cn

Cite this article: 

Huang Zhen-Hua (黄振华), Zhang Jian-Jun (张建军), Ni Jian (倪牮), Cao Yu (曹宇), Hu Zi-Yang (胡子阳), Li Chao (李超), Geng Xin-Hua (耿新华), Zhao Ying (赵颖) Numerical simulation of a triple-junction thin-film solar cell based on μc-Si1-xGex:H 2013 Chin. Phys. B 22 098803

[1] Green M, Emery K, Hishikawa Y and Warta W 2011 Prog. Photovolt.: Res. Appl. 19 84
[2] Zheng X X, Zhang X D, Yang S S, Wang G H, Xu S Z, Wei C C, Sun J, Geng X H, Xiong S Z and Zhao Y 2011 Acta Phys. Sin. 60 068801 (in Chinese)
[3] Yan B, Yue G, Xu X, Yang J and Guha S 2010 Phys. Stat. Sol. A 207 671
[4] Yan B, Yue G, Sivec L, Yang J and Guha S 2011 Appl. Phys. Lett. 99 113512
[5] Zeman M and Krc J 2008 J. Mater. Res. 23 889
[6] Ganguly G, Ikeda T, Nishimiya T, Saitoh K, Kondo M and Matsuda A 1996 Appl. Phys. Lett. 69 4224
[7] Matsui T, Haijun J, Kondo M, Mizuno K, Tsuruga S, Sakai S and Takeuchi Y 2010 35th IEEE Photovoltaic Specialists Conference, June 20-25, 2010 Hawaii, USA, p. 311
[8] Zhang L P, Zhang J J, Shang Z R, Hu Z X, Geng X H and Zhao Y 2008 Chin. Phys. B 17 3448
[9] Zhang L P, Zhang J J, Zhang X, Shang Z R, Hu Z X, Zhang Y P, Geng X H and Zhao Y 2008 Acta Phys. Sin. 57 7338 (in Chinese)
[10] Zhang L P 2009 Investigation of Microcrystalline Silicon Germanium Growth and its Preliminary Application on the Solar Cells (Ph.D. Thesis) (Tianjin: Nankai University) (in Chinese)
[11] Arch J K, Rubinelli F A, Hou J Y and Fonash S J 1991 J. Appl. Phys. 69 7057
[12] Rubinelli F, Rath J and Schropp R 2001 J. Appl. Phys. 89 4010
[13] Ding K, Kirchartz T, Pieters B, Ulbrich C, Ermes A, Schicho S, Lambertz A, Carius R and Rau U 2011 Sol. Energy Mater. Sol. Cells 95 3318
[14] Shah A 2010 Thin-Film Silicon Solar Cells (Lausanne: EPFL Press) p. 25
[15] Ni J, Zhang J J, Cao Y, Wang X B, Li C, Chen X L, Geng X H and Zhao Y 2011 Chin. Phys. B 20 087309
[16] Zeman M, Willemen J, Vosteen L, Tao G and Metselaar J 1997 Sol. Energy Mater. Sol. Cells 46 81
[17] Vukadinavic M, Smole F, Topic M, Schropp R and Rubinelli F 2004 J. Appl. Phys. 96 7289
[18] Yunaz I, Yamada A and Konagai M 2007 Jpn. J. Appl. Phys. 46 1152
[19] Yunaz I, Sriprapha K, Hiza S, Yamada A and Konagai M 2007 Jpn. J. Appl. Phys. 46 1398
[20] Meillaud F, Shah A, Droz C, Vallat-Sauvain E and Miazza C 2006 Sol. Energy Mater. Sol. Cells 90 2952
[21] Takakura H 1992 Jpn. J. Appl. Phys. 31 2394
[22] Carius R, Folsch J, Lundszien D, Houben L and Finger F 1998 Mat. Res. Soc. Symp. Proc. 507 813
[23] Matsui T, Chang C, Takada T, Isomura M, Fujiwara H and Kondo M 2008 Appl. Phys. Express 1 031501
[24] Rubinelli F, Jimenez R, Rath J and Schropp R 2002 J. Appl. Phys. 91 2409
[25] Zeman M, Willemen J A, Vosteen L L A, Tao G and Metselaar J W 1997 Sol. Energy Mater. Sol. Cells 46 81
[26] Hu Z H, Liao X B, Zeng X B, Xu Y Y, Zhang S B, Diao H W and Kong G L 2003 Acta Phys. Sin. 52 217 (in Chinese)
[27] Kaining D, Thomas K, Bart E P, Carolin U, Alexander M E, Sandra S, Andreas L, Reinhard C and Uwe R 2011 Sol. Energy Mater. Sol. Cells 95 3318
[28] Chang C, Matsui T and Kondo M 2008 J. Non-Cryst. Solids 354 2365
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[3] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[4] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[5] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[6] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[7] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[8] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[9] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[10] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[11] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[12] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[13] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[14] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[15] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
No Suggested Reading articles found!