Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 098101    DOI: 10.1088/1674-1056/22/9/098101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Crystallization of polymer chains induced by graphene:Molecular dynamics study

Yang Jun-Sheng (杨俊升)a, Huang Duo-Hui (黄多辉)a, Cao Qi-Long (曹启龙)a, Li Qiang (李强)a, Wang Li-Zhi (王立志)b, Wang Fan-Hou (王藩侯)a
a Computational Physics Key Laboratory of Sichuan Province, Yibin University, Yibin 644007, China;
b School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
Abstract  The present work is devoted to a study of the molecular mechanisms of the crystallization of polymer chains induced by graphene by using molecular dynamics (MD) simulations. From the atomic configuration translation, the number distribution of the atoms, and the order parameter S, the crystallization process can be summarized in two steps, the adsorption and the orientation. By analyzing the diffusion properties of the polymer chains, we find that a graphene substrate has a great adsorption for the polymer molecules and the polymer molecules need more time to adjust their configurations. Therefore, the adsorption step and the orientation step are highly cooperative.
Keywords:  polymer crystallization      molecular dynamics simulations      graphene      adsorption  
Received:  03 February 2013      Revised:  23 March 2013      Accepted manuscript online: 
PACS:  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  31.15.at (Molecule transport characteristics; molecular dynamics; electronic structure of polymers)  
Fund: Project supported by the Science and Research Foundation of Sichuan Educational Committee, China (Grant Nos. 09ZC048, 13ZA0198, and 13ZB0211).
Corresponding Authors:  Wang Fan-Hou     E-mail:  fanhouwangyibin@163.com

Cite this article: 

Yang Jun-Sheng (杨俊升), Huang Duo-Hui (黄多辉), Cao Qi-Long (曹启龙), Li Qiang (李强), Wang Li-Zhi (王立志), Wang Fan-Hou (王藩侯) Crystallization of polymer chains induced by graphene:Molecular dynamics study 2013 Chin. Phys. B 22 098101

[1] Park S and Ruoff R S 2009 Nature Nanotechnol. 4 217
[2] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F and Lau C N 2008 Nano Lett. 8 902
[3] Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
[4] Du X, Skachko I, Barker A and Andrei E Y 2008 Nature Nanotechnol. 3 491
[5] Bunch J S, Verbridge S S, Alden J S, van der Zande A M, Parpia J M, Craighead H G and McEuen P L 2008 Nano Lett. 8 2458
[6] Cao X Z, Merlitz H, Sommer J U and Wu C X 2012 Chin. Phys. B 21 118202
[7] Rong J L, Wang D, Wang X, Li J, Xu T F, Lu M M and Cao M S 2013 Chin. Phys. Lett. 30 016203
[8] Ramanathan T, Abdala A A, Stankovich S, Dikin D A, Herrera-Alonso M, Piner R D, Adamson D H, Schniepp H C, Chen X, Ruoff R S, Nguyen S T, Aksay I A, Prud’Homme R K and Brinson L C 2008 Nature Nanotechnol. 3 327
[9] Rafiee M A, Rafiee J, Wang Z, Song H, Yu Z Z and Koratkar N 2009 ACS Nano 3 3884
[10] Kalaitzidou K, Fukushima H and Drzal L T 2007 Carbon 45 1446
[11] Guo X S, Lu B A and Xie E Q 2007 Chin. Phys. Lett. 24 3485
[12] Wunderlich B 1976 Macromolecular Physics (New York: Academic Press)
[13] Hoffman J D and Miller R L 1997 Polymer 38 3151
[14] Armistead K and Goldbeck-Wood G 1992 Adv. Polym. Sci. 100 219
[15] Point J J 1979 Macromolecules 12 770
[16] Sadler D M and Gilmer G M 1984 Polymer 25 1446
[17] Hokosaka M 1990 Polymer 31 458
[18] Strobl G 2000 Eur. Phys. J. E 3 165
[19] Xu J Z, Chen T, Yang C L, Li Z M, Mao Y M, Zeng B Q and Hiso B S 2010 Macromolecules 43 5000
[20] Fujiwara S and Sato T 1998 Phys. Rev. Lett. 80 991
[21] Accelrys Materials Studio 2005 Accelrys Software, Inc.: San Diego
[22] Yang M J, Koutsos V and Zaiser M J 2005 Phys. Chem. B 109 10009
[23] Andersen H C 1980 J. Chem. Phys. 72 2384
[24] Sun H 1998 J. Phys. Chem. B 102 7338
[25] Natalia B S, Mesfin T, Soumya S P and Sharmila M M 2012 Macromolecules 45 5307
[26] Wu C and Xu W 2006 Polymer 47 6004
[27] Tack J L and Ford D M 2008 J. Mol. Graphics Modell. 26 1269
[28] Grujicic M, Cao G and Roy W N 2004 Appl. Surf. Sci. 227 349
[29] Fujiwara S and Sato T 1997 J. Chem. Phys. 107 613
[30] Yamamoto T 2005 Adv. Polym. Sci 191 37
[31] Yang S, Choi J and Cho M 2012 ACS Appl. Mater Interfaces 4 4792
[32] Charati S G and Stern S A 1998 Macromolecules 31 5529
[33] Harmandaris V A, Daoulas K C and Mavrantzas V G 2005 Macromolecules 38 5796
[34] Yang J S, Yang C L, Wang M S, Chen B D and Ma X G 2011 Phys. Chem. Chem. Phys. 13 15476
[35] Wei C, Srivastava D and Cho K 2002 Nono Lett. 2 647
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[7] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[8] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[9] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[10] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[11] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[12] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[13] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[14] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[15] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
No Suggested Reading articles found!