Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 090202    DOI: 10.1088/1674-1056/22/9/090202
GENERAL Prev   Next  

Pinning consensus analysis of multi-agent networks with arbitrary topology

Ji Liang-Hao (纪良浩)a b, Liao Xiao-Feng (廖晓峰)a, Chen Xin (陈欣)c
a State Key Laboratory of Power Transmission Equipment & System Security and New Technology, College of Computer Science, Chongqing University, Chongqing 400044, China;
b Chongqing key Laboratory of Computational Intelligence (Chongqing University of Posts and Telecommunications), Chongqing 400065, China;
c School of Software Engineering, Chongqing University, Chongqing 400044, China
Abstract  In this paper the pinning consensus of multi-agent networks with arbitrary topology is investigated. Based on the properties of M-matrix, some criteria of pinning consensus are established for the continuous multi-agent network and the results show that the pinning consensus of the dynamical system depends on the smallest real part of the eigenvalue of the matrix which is composed of the Laplacian matrix of the multi-agent network and the pinning control gains. Meanwhile, the relevant work for the discrete-time system is studied and the corresponding criterion is also obtained. Particularly, the fundamental problem of pinning consensus, that is, what kind of node should be pinned, is investigated and the positive answers to this question are presented. Finally, the correctness of our theoretical findings is demonstrated by some numerical simulated examples.
Keywords:  multi-agent      pinning control      consensus      synchronization  
Received:  27 November 2012      Revised:  27 January 2013      Accepted manuscript online: 
PACS:  02.30.Ks (Delay and functional equations)  
  02.30.Yy (Control theory)  
  05.65.+b (Self-organized systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60973114 and 61170249), the Natural Science Foundation of Chongqing Science and Technology Commission, China (Grant Nos. 2009BA2024, cstc2011jjA40045, and cstc2013jcyjA0906), and the State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, China (Grant No. 2007DA10512711206).
Corresponding Authors:  Ji Liang-Hao     E-mail:  jilh77@yahoo.com.cn

Cite this article: 

Ji Liang-Hao (纪良浩), Liao Xiao-Feng (廖晓峰), Chen Xin (陈欣) Pinning consensus analysis of multi-agent networks with arbitrary topology 2013 Chin. Phys. B 22 090202

[1] Xiong W J, Danier W, Ho C and Wang Z D 2011 IEEE Trans. Neural Netw. 22 1231
[2] Olfati-Saber R and Murray R M 2004 IEEE Trans. Automat. Contr. 49 1520
[3] Ji L H and Liao X F 2013 Chin. Phys. B 22 040203
[4] Li H Q, Liao X F and Chen G 2013 Int. J. Control Autom. 11 422
[5] Li H Q, Liao X F and Huang T W 2013 IEEE Trans. Syst. Man and Cybern.: Syst. 99 1
[6] Lü J H and Chen G R 2005 IEEE Trans. Automat. Contr. 50 841
[7] Tan F X, Guan X P and Liu D R 2008 Chin. Phys. B 17 3531
[8] Ji L H and Liao X F 2012 Acta Phys. Sin. 61 150202 (in Chinese)
[9] Li H Q, Liao X F, Dong T and Xiao L 2012 Nonlinear Dyn. 70 2213
[10] Yu W W, Chen G R, Wang Z D and Yang W 2009 IEEE Trans. Syst., Man, and Cybern. 39 1568
[11] Wang H H, Liao X F and Huang T W 2013 Neurocomputing 117 150
[12] Wang H H, Liao X F and Huang T W 2013 Nonlinear Dyn. 73 551
[13] Lü J H, Yu X H, Chen G R and Cheng D Z 2004 IEEE Trans. Circuits Syst. I 51 787
[14] Song H Y, Yu L, Hu H X and Zhang W A 2012 Chin. Phys. B 21 028901
[15] Ji L H, Liao X F and Liu Q 2012 Acta Phys. Sin. 61 220202 (in Chinese)
[16] Zhao J C, Lu J A and Wu X Q 2010 Science China information Sciences 53 813
[17] Zhang H T, Chen M Z Q and Stan G B 2011 IEEE Trans. Circuits Syst. I 58 2247
[18] Zhou X, Feng H, Feng J W and Zhao Y 2011 Commun. Netw. 3 118
[19] Chen T P, Liu X W and Lu W L 2007 IEEE Trans. Circuits Syst. I 54 1317
[20] Yu W W, Chen G R and Lü J H 2009 Automatica 45 429
[21] Zhou J, Wu X Q, Yu W W, Michael S and Lu J A 2008 Chaos 18 043111
[22] Song Q and Cao J D 2010 IEEE Trans. Circuits Syst. I 57 672
[23] Chen F, Chen Z Q, Xiang L Y, Liu Z X and Yuan Z Z 2009 Automatica 45 1215
[24] Li R, Duan Z S and Chen G R 2009 Chin. Phys. B 18 106
[25] Nariman M, Mohammad B M, Jürgen K, Lu J Q and Ahmad A 2012 Int. J. Bifurc. Chaos 22 1250239
[26] Song Q, Cao J D and Yu W W 2012 IEEE Trans. Circuits Syst. I 59 2692
[27] Roger A H and Charles R J 1991 Topics in Matrix Analysis (Cambridge: Cambridge University Press)
[28] Roger A H and Charles R J 1985 Matrix Analysis (Cambridge: Cambridge University Press)
[29] Zhou J, Lu J A and Lü J H 2006 IEEE Trans. Automat. Contr. 51 652
[30] Wang X F and Chen G R 2002 Physica A 310 521
[31] Wu C W 2008 Proc. IEEE int. Symp. Circuits syst., May, 2008, Seattle, WA, America, p. 2530
[32] Zhou J, Lu J A and Lü J H 2008 Automatica 44 996
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[4] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[5] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[6] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[7] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[8] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[9] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[10] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[11] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[12] Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure
Zhi-Hai Wu(吴治海) and Lin-Bo Xie(谢林柏). Chin. Phys. B, 2022, 31(12): 128902.
[13] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
[14] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[15] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
No Suggested Reading articles found!