Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 020203    DOI: 10.1088/1674-1056/ac21c1
GENERAL Prev   Next  

Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances

Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏)
School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  This paper presents a novel flocking algorithm based on a memory-enhanced disturbance observer. To compensate for external disturbances, a filtered regressor for the double integrator model subject to external disturbances is designed to extract the disturbance information. With the filtered regressor method, the algorithm has the advantage of eliminating the need for acceleration information, thus reducing the sensor requirements in applications. Using the information obtained from the filtered regressor, a batch of stored data is used to design an adaptive disturbance observer, ensuring that the estimated values of the parameters of the disturbance system equation and the initial value converge to their actual values. The result is that the flocking algorithm can compensate for external disturbances and drive agents to achieve the desired collective behavior, including virtual leader tracking, inter-distance keeping, and collision avoidance. Numerical simulations verify the effectiveness of the algorithm proposed in the present study.
Keywords:  flocking control      multi-agent systems      adaptive control      disturbance rejection  
Received:  01 April 2021      Revised:  07 August 2021      Accepted manuscript online:  27 August 2021
PACS:  02.30.Yy (Control theory)  
Corresponding Authors:  Jinsheng Sun     E-mail:  jssun67@163.com

Cite this article: 

Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏) Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances 2022 Chin. Phys. B 31 020203

[1] Chan X, Yin L Y, Liu Y T and Liu H 2019 Chin. Phys. B 28 090701
[2] Qiu X F, Zhang Y X and Li K Z 2019 Chin. Phys. B 28 050501
[3] Altafini C 2020 Automatica 122 109253
[4] Zixing W, Jinsheng S and Ximing W 2018 Chin. Phys. B 27 060202
[5] Liu Y, Shi P and Lim C C 2020 IEEE Trans. Circuits II 67 1984
[6] Freudenthaler G and Meurer T 2020 Automatica 115 108897
[7] Stamouli C J, Bechlioulis C P and Kyriakopoulos K J 2020 IEEE Robot Autom. Lett. 5 2929
[8] Lü H, He W, Han Q L, Ge X and Peng C 2020 Inform. Sci. 512 338
[9] Liu T, Qi J and Jiang Z P 2020 Automatica 117 108992
[10] Wang F Y, Ni Y H, Liu Z X and Chen Z Q 2020 ISA Trans. 99 123
[11] Amirian N and Shamaghdari S 2021 IET Control Theory Appl. 15 559
[12] Zhou J, Huang R and Huang H 2021 Int. J. Syst. Sci. 1 20
[13] Beaver L E, Kroninger C and Malikopoulos A A 2020 American Control Conference (ACC), July 1-3, 2020, Denver, CO, USA, p. 683
[14] Jafari M, Xu H and Carrillo L R G 2020 IFAC J. Syst. Control 13 100096
[15] Yuan W, Ganganath N, Cheng C T, Guo Q and Lau F C 2019 Chaos 29 063113
[16] Wang H 2013 Automatica 49 2774
[17] Ghasemi M and Nersesov S G 2014 Automatica 50 1209
[18] Li X, Su H and Chen M Z 2016 Nonlinear Dynam. 85 415
[19] Ghapani S, Mei J, Ren W and Song Y 2016 Automatica 67 67
[20] Zhao X W, Guan Z H, Li J, Zhang X H and Chen C Y 2017 Internat. J. Robust Nonlinear Control 27 3685
[21] Sun F, Wang R, Zhu W and Li Y 2019 Appl. Math. Comput. 350 66
[22] Dong Y and Huang J 2018 J. Dyn. Syst. Meas. Control 140 091011
[23] Zhang Q, Gong Z, Yang Z and Chen Z 2019 Int. J. Control Autom. Syst. 17 1177
[24] Dong Y and Huang J 2015 Automatica 55 197
[25] Yazdani S and Haeri M 2019 J. Dyn. Syst. Meas. Control 141 061004
[26] Yazdani S and Su H 2020 IEEE Trans. SMCS 99 1
[27] Kosmatopoulos E B, Polycarpou M M, Christodoulou M A and Ioannou P A 1995 IEEE Trans. Neural Networ. 6 422
[28] Yang J, Na J and Gao G 2019 Int. J. Adapt. Control Signal Process 33 1868
[29] Li Z, Sun, J S and Modares H 2020 2020 IEEE Conference on Control Technology and Applications (CCTA), August 24-26, Sheraton, Montréal, Canada, p. 504
[30] Olfati-Saber R 2006 IEEE Trans. Automat. Control 51 401
[31] Zhu J, Lu J and Yu X 2013 IEEE Trans. Circuits I 60 199
[32] Parikh A, Kamalapurkar R and Dixon W E 2019 Int. J. Adapt. Control Signal Process. 33 1775
[33] Girish C and Eric J 2011 2011 American Control Conference (ACC), June, 29-01, O'Farrell Street, San Francisco, CA, USA, p. 3547
[34] Reynolds C W 1987 ACM SIGGRAPH 21 25
[35] Vicsek T, Czirók A, Ben-Jacob E, Cohen I and Shochet O 1995 Phys. Rev. Lett. 75 1226
[36] Couzin I D, Krause J, James R, Ruxton G D and Franks N R 2002 J. Theor. Biol. 218 1
[37] Cucker F and Smale S 2007 IEEE Ttans. Automat. Control 52 852
[38] Liu W, Gao Z 2020 Comput. Commun. 153 95
[39] Peng Z, Wang J and Wang D 2020 IEEE Trans. Ind. Inform. 17 732
[1] Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure
Zhi-Hai Wu(吴治海) and Lin-Bo Xie(谢林柏). Chin. Phys. B, 2022, 31(12): 128902.
[2] Consensus problems on networks with free protocol
Xiaodong Liu(柳晓东) and Lipo Mo(莫立坡). Chin. Phys. B, 2021, 30(7): 070701.
[3] Group consensus of multi-agent systems subjected to cyber-attacks
Hai-Yun Gao(高海云), Ai-Hua Hu(胡爱花), Wan-Qiang Shen(沈莞蔷), Zheng-Xian Jiang(江正仙). Chin. Phys. B, 2019, 28(6): 060501.
[4] Successive lag cluster consensus on multi-agent systems via delay-dependent impulsive control
Xiao-Fen Qiu(邱小芬), Yin-Xing Zhang(张银星), Ke-Zan Li(李科赞). Chin. Phys. B, 2019, 28(5): 050501.
[5] Mean-square composite-rotating consensus of second-order systems with communication noises
Li-po Mo(莫立坡), Shao-yan Guo(郭少岩), Yong-guang Yu(于永光). Chin. Phys. B, 2018, 27(7): 070504.
[6] Time-varying formation for general linear multi-agent systems via distributed event-triggered control under switching topologies
Jin-Huan Wang(王金环), Yu-Ling Xu(许玉玲), Jian Zhang(张建), De-Dong Yang(杨德东). Chin. Phys. B, 2018, 27(4): 040504.
[7] Leader-following consensus of discrete-time fractional-order multi-agent systems
Erfan Shahamatkhah, Mohammad Tabatabaei. Chin. Phys. B, 2018, 27(1): 010701.
[8] Dynamic analysis and fractional-order adaptive sliding mode control for a novel fractional-order ferroresonance system
Ningning Yang(杨宁宁), Yuchao Han(韩宇超), Chaojun Wu(吴朝俊), Rong Jia(贾嵘), Chongxin Liu(刘崇新). Chin. Phys. B, 2017, 26(8): 080503.
[9] Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control
Xiang Zhang(张翔), Jin-Huan Wang(王金环), De-Dong Yang(杨德东), Yong Xu(徐勇). Chin. Phys. B, 2017, 26(7): 070501.
[10] Cooperative impulsive formation control for networked uncertain Euler-Lagrange systems with communication delays
Liang-ming Chen(陈亮名), Chuan-jiang Li(李传江), Yan-chao Sun(孙延超), Guang-fu Ma(马广富). Chin. Phys. B, 2017, 26(6): 068703.
[11] Stochastic bounded consensus of second-order multi-agent systems in noisy environment
Hong-Wei Ren(任红卫), Fei-Qi Deng(邓飞其). Chin. Phys. B, 2017, 26(10): 100506.
[12] Asymptotic bounded consensus tracking of double-integratormulti-agent systems with bounded-jerk target based onsampled-data without velocity measurements
Shuang-Shuang Wu(吴爽爽), Zhi-Hai Wu(吴治海), Li Peng(彭力), Lin-Bo Xie(谢林柏). Chin. Phys. B, 2017, 26(1): 018903.
[13] Distributed event-triggered consensus tracking of second-order multi-agent systems with a virtual leader
Jie Cao(曹劼), Zhi-Hai Wu(吴治海), Li Peng(彭力). Chin. Phys. B, 2016, 25(5): 058902.
[14] Consensus for second-order multi-agent systems with position sampled data
Rusheng Wang(王如生), Lixin Gao(高利新), Wenhai Chen(陈文海), Dameng Dai(戴大蒙). Chin. Phys. B, 2016, 25(10): 100202.
[15] Distributed H control of multi-agent systems with directed networks
Liu Wei (刘伟), Liu Ai-Li (柳爱利), Zhou Shao-Lei (周绍磊). Chin. Phys. B, 2015, 24(9): 090208.
No Suggested Reading articles found!