Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 090203    DOI: 10.1088/1674-1056/22/9/090203
GENERAL Prev   Next  

Simultaneous identification of unknown time delays and model parameters in uncertain dynamical systems with linear or nonlinear parameterization by autosynchronization

Gu Wei-Dong (顾卫东), Sun Zhi-Yong (孙志勇), Wu Xiao-Ming (吴晓明), Yu Chang-Bin (于长斌)
Shandong Provincial Key Laboratory of Computer Network, Shandong Computer Science Center, Jinan 250014, China
Abstract  In this paper, we propose a general method to simultaneously identify both unknown time delays and unknown model parameters in delayed dynamical systems based on the autosynchronization technique. The design procedure is presented in detail by constructing a specific Lyapunov function and linearizing the model function with nonlinear parameterization. The obtained result can be directly extended to the identification problem of linearly parameterized dynamical systems. Two typical numerical examples confirming the effectiveness of the identification method are given.
Keywords:  autosynchronization      parameter identification      delay identification      nonlinear parameterization  
Received:  05 January 2013      Revised:  19 April 2013      Accepted manuscript online: 
PACS:  02.30.Ks (Delay and functional equations)  
  05.45.Tp (Time series analysis)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX03005-002), the Shandong Academy of Science Development Fund for Science and Technology, China, and the Pilot Project for Science and Technology in Shandong Academy of Science, China.
Corresponding Authors:  Sun Zhi-Yong     E-mail:  kfmuzik@126.com; sun.zhiyong.cn@gmail.com; sunzhy@sdas.org

Cite this article: 

Gu Wei-Dong (顾卫东), Sun Zhi-Yong (孙志勇), Wu Xiao-Ming (吴晓明), Yu Chang-Bin (于长斌) Simultaneous identification of unknown time delays and model parameters in uncertain dynamical systems with linear or nonlinear parameterization by autosynchronization 2013 Chin. Phys. B 22 090203

[1] Parlitz U 1996 Phys. Rev. Lett. 76 1232
[2] Parlitz U, Junge L and Kocarev L 1996 Phys. Rev. E 54 6253
[3] Al-Sawalha M M and Noorani M 2010 Commun. Nonlinear Sci. Numer. Simul. 15 1036
[4] Sun Z, Si G, Min F and Zhang Y 2012 Nonlinear Dyn. 68 471
[5] Adloo H and Roopaei M 2011 Nonlinear Dyn. 65 141
[6] Sun Z, Zhu W, Si G, Ge Y and Zhang Y 2013 Nonlinear Dyn. 72 729
[7] Nijmeijer H and Mareels I M Y 1997 IEEE Trans. Circuit Syst. I 44 882
[8] Abarbanel H D I, Creveling D R, Farsian R and Kostuk M 2009 SIAM J. Appl. Dyn. Syst. 8 1341
[9] Loria A, Panteley E and Zavala-Río A 2009 IEEE Trans. Circ. Syst. I 56 2703
[10] Ma H and Lin W 2009 Phys. Lett. A 374 161
[11] Ghosh D 2008 Europhys. Lett. 84 40012
[12] Lin W and Ma H F 2007 Phys. Rev. E 75 066212
[13] Liu Y, Tang W and Kocarev L 2008 Int. J. Bifur. Chaos 18 2415
[14] Wei H and Li L 2010 Chaos 20 023112
[15] Yu D and Parlitz U 2008 Phys. Rev. E 77 66221
[16] Wang X Y and Ren X L 2011 Chin. Phys. Lett. 28 050502
[17] Al-sawalha M M and Noorani M 2011 Chin. Phys. Lett. 28 110507
[18] Huang D 2005 Phys. Rev. E 71 037203
[19] Atay F M 2010 Complex Time-Delay Systems: Theory and Applications (Berlin: Springer-Verlag)
[20] Yu D and Boccaletti S 2009 Phys. Rev. E 80 036203
[21] Ma H, Xu B, Lin W and Feng J 2010 Phys. Rev. E 82 066210
[22] Sorrentino F and DeLellis P 2012 Chaos Solitons Fractals 45 35
[23] Liu H, Lu J A, Lü J and Hill D J 2009 Automatica 45 1799
[24] Che Y, Li R, Han C, Wang J, Cui S, Deng B and Wei X 2012 Eur. Phys. J. B 85 1
[25] Huang D 2006 Phys. Rev. E 73 066204
[26] Peng H, Li L, Yang Y and Sun F 2011 Phys. Rev. E 83 036202
[27] Jacquez J A and Greif P 1985 Math. Biosci. 77 201
[28] Dedieu H and Ogorzalek M 1997 IEEE Trans. Circuit Syst. I 44 948
[29] Zhang Y, Lu S and Wang Y H 2009 Chin. Phys. Lett. 26 090501
[30] Tang M 2012 Chin. Phys. B 21 020509
[31] Shi X and Wang Z 2012 Nonlinear Dyn. 69 2147
[32] Pourdehi S, Karimaghaee P and Karimipour D 2011 Phys. Lett. A 375 1769
[1] Parameter identification and state-of-charge estimation approach for enhanced lithium-ion battery equivalent circuit model considering influence of ambient temperatures
Hui Pang(庞辉), Lian-Jing Mou(牟联晶), Long Guo(郭龙). Chin. Phys. B, 2019, 28(10): 108201.
[2] Adaptive lag synchronization of uncertain dynamical systems with time delays via simple transmission lag feedback
Gu Wei-Dong (顾卫东), Sun Zhi-Yong (孙志勇), Wu Xiao-Ming (吴晓明), Yu Chang-Bin (于长斌). Chin. Phys. B, 2013, 22(8): 080507.
[3] A new identification control for generalized Julia sets
Sun Jie (孙洁), Liu Shu-Tang (刘树堂). Chin. Phys. B, 2013, 22(5): 050505.
[4] Adaptive lag synchronization and parameter identification of fractional order chaotic systems
Zhang Ruo-Xun(张若洵) and Yang Shi-Ping(杨世平) . Chin. Phys. B, 2011, 20(9): 090512.
[5] Persistent excitation in adaptive parameter identification of uncertain chaotic system
Zhao Jun-Chan(赵军产), Zhang Qun-Jiao(张群娇), and Lu Jun-An(陆君安). Chin. Phys. B, 2011, 20(5): 050507.
[6] Synchronization of spatiotemporal chaos in a class of complex dynamical networks
Zhang Qing-Ling(张庆灵) and Lü Ling(吕翎). Chin. Phys. B, 2011, 20(1): 010510.
[7] Synchronization-based approach for parameter identification in delayed chaotic network
Cai Guo-Liang(蔡国梁) and Shao Hai-Jian(邵海见). Chin. Phys. B, 2010, 19(6): 060507.
[8] Synchronization and parameter identification of one class of realistic chaotic circuit
Wang Chun-Ni(王春妮), Ma Jun(马军), Chu Run-Tong(褚润通), and Li Shi-Rong(李世荣). Chin. Phys. B, 2009, 18(9): 3766-3771.
[9] Breaking chaotic shift key communication via adaptive key identification
Ren Hai-Peng(任海鹏), Han Chong-Zhao(韩崇昭), and Liu Ding(刘丁) . Chin. Phys. B, 2008, 17(4): 1202-1208.
[10] Backstepping synchronization of uncertain chaotic systems by a single driving variable
Lü Ling(吕翎), Zhang Qing-Ling(张庆灵), and Guo Zhi-An(郭治安). Chin. Phys. B, 2008, 17(2): 498-502.
[11] Adaptive generalized projective synchronization of two different chaotic systems with unknown parameters
Zhang Ruo-Xun (张若洵), Yang Shi-Ping (杨世平). Chin. Phys. B, 2008, 17(11): 4073-4079.
[12] Generalized projective synchronization of a class of chaotic (hyperchaotic) systems with uncertain parameters
Jia Zhen(贾贞), Lu Jun-An(陆君安), Deng Guang-Ming(邓光明), and Zhang Qun-Jiao(张群娇). Chin. Phys. B, 2007, 16(5): 1246-1251.
[13] Adaptive synchronization of hyperchaotic Lü system with uncertainty
Gao Bing-Jian(高秉建) and Lu Jun-An(陆君安). Chin. Phys. B, 2007, 16(3): 666-670.
[14] Controlling the Chen attractor using linear feedback based on parameter identification
Lü Jin-Hu (吕金虎), Zhou Tian-Shou (周天寿), Zhang Suo-Chun (张锁春). Chin. Phys. B, 2002, 11(1): 12-16.
No Suggested Reading articles found!