Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 090201    DOI: 10.1088/1674-1056/22/9/090201
GENERAL   Next  

Symmetries and conserved quantities of discrete wave equation associated with the Ablowitz-Ladik-Lattice system

Fu Jing-Li (傅景礼)a, Song Duan (宋端)b, Fu Hao (付昊)c, He Yu-Fang (何玉芳)a, Hong Fang-Yu (洪方昱)a
a Institute of Mathematical Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China;
b Department of Physics, Eastern Liaoning University, Dandong 118001, China;
c China Jingye Engineering Corporation Limited, Shenzhen Brach, Shenzhen 518054, China
Abstract  In this paper, we present a new method to obtain the Lie symmetries and conserved quantities of the discrete wave equation with the Ablowitz-Ladik-Lattice equations. Firstly, the wave equation is transformed into a simple difference equation with the Ablowitz-Ladik-Lattice method. Secondly, according to the invariance of the discrete wave equation and the Ablowitz-Ladik-Lattice equations under infinitesimal transformation of dependent and independent variables, we derive the discrete determining equation and the discrete restricted equations. Thirdly, a series of the discrete analogs of conserved quantities, the discrete analogs of Lie groups, and the characteristic equations are obtained for the wave equation. Finally, we study a model of a biological macromolecule chain of mechanical behaviors, the Lie symmetry theory of discrete wave equation with the Ablowitz-Ladik-Lattice method is verified.
Keywords:  symmetry      invariant      Ablowitz-Ladik-Lattice system      wave equation  
Received:  09 January 2013      Revised:  27 February 2013      Accepted manuscript online: 
PACS:  02.20.-a (Group theory)  
  02.30.Ik (Integrable systems)  
  02.30.Ks (Delay and functional equations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11072218 and 11272287).
Corresponding Authors:  Fu Jing-Li     E-mail:  sqfujingli@163.com

Cite this article: 

Fu Jing-Li (傅景礼), Song Duan (宋端), Fu Hao (付昊), He Yu-Fang (何玉芳), Hong Fang-Yu (洪方昱) Symmetries and conserved quantities of discrete wave equation associated with the Ablowitz-Ladik-Lattice system 2013 Chin. Phys. B 22 090201

[1] Mei F X 1999 Application of Lie Group and Lie algebra to Constraint Mechanical Systems (Beijing: Science Press) (in Chinese)
[2] Guo Y X, Jiang L Y and Yu Y 2001 Chin. Phys. 10 181
[3] Zhang H B, Chen L Q and Liu R W 2005 Chin. Phys. 14 1063
[4] Ge W K 2008 Acta Phys. Sin. 57 6714 (in Chinese)
[5] Camci U and Kucukakca Y 2007 Phys. Rev. D 76 084023
[6] Belmonte-Beitia J, Perez-Garcia V M, Vekslerchik V and Torres P 2007 Phys. Rev. Lett. 98 064102
[7] Sanyal A K, Modak B, Rubano C and Piedipalumbo E 2005 Gen. Relativ. Gravit. 37 407
[8] Azad H and Mustafa M T 2007 J. Math. Anal. Appl. 333 1180
[9] Vakili B 2008 Phys. Lett. B 669 206
[10] Anderson R L and Davison S M 1974 J. Math. Analysis Applic. 48 301
[11] Anderson R, Kumei S and Wulfman C 1972 Phys. Rev. Lett. 28 988
[12] Oron A and Rosenau P 1986 Phys. Lett. A 118 172
[13] Baikov V A, Gazizov R K and Ibragimov N H 1993 Proc. Steklov Inst. Math. 200 35
[14] Zhu J M and Ma Z Y 2005 Chin. Phys. 14 17
[15] He Y F, Fu J L and Li X W 2010 Chin. Phys. B 19 080301
[16] Levi D, Tremblay S and Winternitz P 2001 J. Phys. A: Math. Gen. 34 9507
[17] Fu J L, Chen B Y, Tang Y F and Fu H 2008 Chin. Phys. B 17 3942
[18] Patera J, Sharp R, Winterntz T P and Zassanhaus H 1976 J. Math. Phys. 17 986
[19] Levi D and Winternitz P 2002 J. Phys. A 35 2249
[20] Ames W F, Lohner R J and Adames E 1981 Int. J. Non-liner Mech. 16 439
[21] Torrisi Mariano and Valenti A 1992 Modern Group Analysis: Advanced Analytical and Computational Methods in Mathematical Physics: Proceedings of the International Workshop, Acireale, Catania, Italy
[1] Conformable fractional heat equation with fractional translation symmetry in both time and space
W S Chung, A Gungor, J Kříž, B C Lütfüoǧlu, and H Hassanabadi. Chin. Phys. B, 2023, 32(4): 040202.
[2] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[3] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
[4] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[5] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[6] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[7] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[8] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[9] Conservation of the particle-hole symmetry in the pseudogap state in optimally-doped Bi2Sr2CuO6+δ superconductor
Hongtao Yan(闫宏涛), Qiang Gao(高强), Chunyao Song(宋春尧), Chaohui Yin(殷超辉), Yiwen Chen(陈逸雯), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), Guodong Liu(刘国东), Lin Zhao(赵林), Zuyan Xu(许祖彦), and X. J. Zhou(周兴江). Chin. Phys. B, 2022, 31(8): 087401.
[10] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[11] Local sum uncertainty relations for angular momentum operators of bipartite permutation symmetric systems
I Reena, H S Karthik, J Prabhu Tej, Sudha, A R Usha Devi, and A K Rajagopal. Chin. Phys. B, 2022, 31(6): 060301.
[12] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[13] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[14] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[15] Residual symmetries, consistent-Riccati-expansion integrability, and interaction solutions of a new (3+1)-dimensional generalized Kadomtsev—Petviashvili equation
Jian-Wen Wu(吴剑文), Yue-Jin Cai(蔡跃进), and Ji Lin(林机). Chin. Phys. B, 2022, 31(3): 030201.
No Suggested Reading articles found!