|
|
Particle-hole bound states of dipolar molecules in an optical lattice |
Zhang Yi-Cai (张义财)a, Wang Han-Ting (汪汉廷)a, Shen Shun-Qing (沈顺清)b, Liu Wu-Ming (刘伍明)a |
a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b Department of Physics and Centre of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong, China |
|
|
Abstract We investigate the particle-hole pair excitations of dipolar molecules in an optical lattice, which can be described with an extended Bose-Hubbard model. For strong enough dipole-dipole interaction, the particle-hole pair excitations can form bound states in one and two dimensions. With decreasing dipole-dipole interaction, the energies of the bound states increase and merge into the particle-hole continuous spectrum gradually. The existence regions, the energy spectra and the wave functions of the bound states are carefully studied and the symmetries of the bound states are analyzed with group theory. For a given dipole-dipole interaction, the number of bound states varies in momentum space and a number distribution of the bound states is illustrated. We also discuss how to observe these bound states in future experiments.
|
Received: 15 March 2013
Revised: 15 April 2013
Accepted manuscript online:
|
PACS:
|
05.30.Jp
|
(Boson systems)
|
|
03.75.Hh
|
(Static properties of condensates; thermodynamical, statistical, and structural properties)
|
|
03.65.Ge
|
(Solutions of wave equations: bound states)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB921502), the National Natural Science Foundation of China (Grant No. 10934010), and the Joint Research Projects of the National Natural Science Foundation of China and Hong Kong Research Grant Council (Grant Nos. 11061160490 and N-HKU748/10). |
Corresponding Authors:
Zhang Yi-Cai
E-mail: zhangyicai123456@163.com
|
Cite this article:
Zhang Yi-Cai (张义财), Wang Han-Ting (汪汉廷), Shen Shun-Qing (沈顺清), Liu Wu-Ming (刘伍明) Particle-hole bound states of dipolar molecules in an optical lattice 2013 Chin. Phys. B 22 090501
|
[1] |
Carr L D, DeMille D, Krems R V and Ye J 2009 New J. Phys. 11 055049
|
[2] |
Dulieu O and Gabbanini C 2009 Rep. Prog. Phys. 72 086401
|
[3] |
Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Chin C, Denschlag J H and Grimm R 2003 Science 302 2101
|
[4] |
Greiner M, Regal C A and Jin D S 2003 Nature 426 537
|
[5] |
Volz T, Syassen N, Bauer D M, Hansis E, Dürr S and Rempe G 2006 Nat. Phys. 2 692
|
[6] |
Danzl J G, Mark M J, Haller E, Gustavsson M, Hart R, Aldegunde J, Hutson J M and Nägerl H C 2010 Nat. Phys. 6 265
|
[7] |
Ni K K, Ospelkaus S, de Miranda M H G, Pe’er A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S and Ye J 2008 Science 322 231
|
[8] |
Ospelkaus S, Pe’er A, Ni K K, Zirbel J J, Neyenhuis B, Kotochigova S, Julienne P S, Ye J and Jin D S 2008 Nat. Phys. 4 622
|
[9] |
Sage J M, Sainis S, Bergeman T and DeMille D 2005 Phys. Rev. Lett. 94 203001
|
[10] |
Wang D, Kim J T, Ashbaugh C, Eyler E E, Gould P L and Stwalley W C 2007 Phys. Rev. A 75 032511
|
[11] |
Sawyer B C, Lev B L, Hudson E R, Stuhl B K, Lara M, Bohn J L and Ye J 2007 Phys. Rev. Lett. 98 253002
|
[12] |
DeMille D 2002 Phys. Rev. Lett. 88 067901
|
[13] |
Büchler H P, Demler E, Lukin M, Micheli A, Prokof’ev N, Pupillo G and Zoller P 2007 Phys. Rev. Lett. 98 060404
|
[14] |
Santos L, Shlyapnikov G V, Zoller P and Lewenstein M 2000 Phys. Rev. Lett. 85 1791
|
[15] |
Cooper N R, Rezayi E H and Simon S H 2005 Phys. Rev. Lett. 95 200402
|
[16] |
Baranov M A, Osterloh K and Lewenstein M 2005 Phys. Rev. Lett. 94 070404
|
[17] |
Góral K, Santos L and Lewenstein M 2002 Phys. Rev. Lett. 88 170406
|
[18] |
Menotti C, Trefzger C and Lewenstein M 2007 Phys. Rev. Lett. 98 235301
|
[19] |
Lin C, Zhao E and Liu W V 2010 Phys. Rev. B 81 045115
|
[20] |
Bruder C, Fazio R and Schön G 1993 Phys. Rev. B 47 342
|
[21] |
van Otterlo A, Wagenblast K H, Baltin R, Bruder C, Fazio R and Schön G 1995 Phys. Rev. B 52 16176
|
[22] |
Niyaz P, Scalettar R T, Fong C Y and Batrouni G G 1994 Phys. Rev. B 50 362
|
[23] |
Sengupta P, Pryadko L P, Alet F, Troyer M and Schmid G 2005 Phys. Rev. Lett. 94 207202
|
[24] |
Hassan S R, Medici L D and Tremblay A M S 2007 Phys. Rev. B 76 144420
|
[25] |
Iskin M and Freericks J K 2009 Phys. Rev. A 79 053634
|
[26] |
Pai R V and Pandit R 2005 Phys. Rev. B 71 104508
|
[27] |
Chen Y C, Melko R G, Wessel S and Kao Y J 2008 Phys. Rev. B 77 014524
|
[28] |
Wang Y M, Liang J Q 2012 Chin. Phys. B 21 060305
|
[29] |
Fisher M P A, Weichman P B, Grinstein G and Fisher D S 1989 Phys. Rev. B 40 546
|
[30] |
van Oosten D, van der Straten P and Stoof H T C 2001 Phys. Rev. A 63 053601
|
[31] |
Kovrizhin D L, Pai G V and Sinha S 2005 Europhys. Lett. 72 162
|
[32] |
Gallagher F B and Mazumdar S 1997 Phys. Rev. B 56 15025
|
[33] |
Barford W 2002 Phys. Rev. B 65 205118
|
[34] |
Al-Hassanieh K A, Reboredo F A, Feiguin A E, González I and Dagotto E 2008 Phys. Rev. Lett. 100 166403
|
[35] |
Mattis D C 1981 The Theory of Magnetism Vol. I (Berlin-New York: Springer-Verlag)
|
[36] |
Economou E N 2006 Green’s Functions in Quantum Physics 3 edn. (Berlin:Springer-Verlag)
|
[37] |
Nygaard N, Piil R and Molmer K 2008 Phys. Rev. A 78 023617
|
[38] |
Barford W 2002 Phys. Rev. B 65 205118
|
[39] |
Wortis M 1963 Phys. Rev. 132 85
|
[40] |
Ye J W, Zhang J M, Liu W M, Zhang K Y, Li Y and Zhang W P 2011 Phys. Rev. A 83 051604
|
[41] |
Stamper-Kurn D M, Chikkatur A P, Görlitz A, Inouye S, Gupta S, Pritchard D E and Ketterle W 1999 Phys. Rev. Lett. 83 2876
|
[42] |
van Oosten D, Dickerscheid D B M, Farid B, van der Straten P and Stoof H T C 2005 Phys. Rev. A 71 021601
|
[43] |
Rey A M, Blakie P B, Pupillo G, Williams C J and Clark C W 2005 Phys. Rev. A 72 023407
|
[44] |
Ernst P T, Götze S, Krauser J S, Pyka K, Lühmann D S, Pfannkuche D and Sengstock K 2010 Nat. Phys. 6 56
|
[45] |
Bissbort U, Götze S, Li Y, Heinze J, Krauser J S, Weinberg M, Becker C, Sengstock K and Hofstetter W 2011 Phys. Rev. Lett. 106 205303
|
[46] |
Clément D, Fabbri N, Fallani L, Fort C and Inguscio M 2009 Phys. Rev. Lett. 102 155301
|
[47] |
Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
|
[48] |
Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108
|
[49] |
Mabrouk N and Berriche H 2008 J. Phys. B: At. Mol. Opt. Phys. 41 155101
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|