|
|
Quantum information entropies of the eigenstates for the Pöschl-Teller-like potential |
Guo-Hua Suna, M. Avila Aokia, Shi-Hai Dongb |
a Centro Universitario Valle de Chalco, Universidad Autónoma del Estado de México, Valle de Chalco Solidaridad, Estado de México, 56615, Mexico; b Departamento de Física, Escuela Superior de Física y Matemátics, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, Mexico D. F. 07738, Mexico |
|
|
Abstract Shannon entropy for lower position and momentum eigenstates of Pöschl-Teller-like potential is evaluated. Based on the entropy densities demonstrated graphically, we note that the wave through of the position information entropy density ρ(x) moves right when the potential parameter V1 increases and its amplitude decreases. However, its wave through moves left with the increase in the potential parameter |V2|. Concerning the momentum information entropy density ρ(p), we observe that its amplitude increases with increasing potential parameter V1, but its amplitude decreases with increasing |V2|. The Bialynicki-Birula-Mycielski (BBM) inequality has also been tested for a number of states. Moreover, there exist eigenstates that exhibit squeezing in the momentum information entropy. Finally, we note that position information entropy increases with V1, but decreases with |V2|. However, the variation of momentum information entropy is contrary to that of the position information entropy.
|
Received: 22 September 2012
Revised: 31 October 2012
Accepted manuscript online:
|
PACS:
|
03.65.-w
|
(Quantum mechanics)
|
|
03.65.Ge
|
(Solutions of wave equations: bound states)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by COFAA-IPN (Grant No. 20120876-SIP-IN). |
Corresponding Authors:
Guo-Hua Sun
E-mail: sunghdb@yahoo.com
|
Cite this article:
Guo-Hua Sun, M. Avila Aoki, Shi-Hai Dong Quantum information entropies of the eigenstates for the Pöschl-Teller-like potential 2013 Chin. Phys. B 22 050302
|
[1] |
Yáñez R J, van Assche W and Dehesa J S 1994 Phys. Rev. A 50 3065
|
[2] |
Aptekarev A I, Dehesa J S and Yáñez R J 1994 J. Math. Phys. 35 4423
|
[3] |
Shannon C E 1948 Bell Syst. Tech. J. 27 623
|
[4] |
Shannon C E 1993 Collected Papers (New York: IEEE Press)
|
[5] |
Everett H 1973 The Many World Interpretation of Quantum Mechanics (Princeton, NJ: Princeton University Press)
|
[6] |
Hirschmann Jr I I 1957 Am. J. Math. 79 152
|
[7] |
Beckner W 1975 Ann. Math. 102 159
|
[8] |
Bialynicki-Birula I and Mycielski J 1975 Commun. Math. Phys. 44 129
|
[9] |
Bialynicki-Birula I and Rudnicki L 2010 arXive: 1001.4668 [quant-ph]
|
[10] |
Orlowski A 1997 Phys. Rev. A 56 2545
|
[11] |
Atre R, Kumar A, Kumar C N and Panigrahi P 2004 Phys. Rev. A 69 052107
|
[12] |
Romera E and de los Santos F 2007 Phys. Rev. Lett. 99 263601
|
[13] |
Galindo A and Pascual P 1978 Quantum Mechanics (Berlin: Springer)
|
[14] |
Angulo J C, Antolin J, Zarzo A and Cuchi J C 1999 Eur. Phys. J. D 7 479
|
[15] |
Majernik V and Opatrný T 1996 J. Phys. A 29 2187
|
[16] |
Dehesa J S, Martínez-Finkelshtein A and Sorokin V N 2006 Mol. Phys. 104 613
|
[17] |
Coffey M W 2007 Can. J. Phys. 85 733
|
[18] |
Aydiner E, Orta C and Sever R 2008 Int. J. Mod. Phys. B 22 231
|
[19] |
Popov D 2001 Buletinul Stiintific al Universitatii "Politehnica" din Timisoara, Seria Matematica-Fizica 46 60
|
[20] |
Dehesa J S, van Assche W and Yáñez R J 1997 Methods Appl. Math. 4 91
|
[21] |
Kumar A 2005 Ind. J. Pure. Appl. Phys. 43 958
|
[22] |
Buyarov V S, López-Artés P, Martínez-Finkelshtein A and van Assche W 2000 J. Phys. A 33 6549
|
[23] |
Katriel J and Sen K D 2010 J. Comp. Appl. Math. 233 1399
|
[24] |
Fu B B and Gao Z Y 2006 Chin. Phys. Lett. 23 520
|
[25] |
Bagrov V G and Gitman D M 1990 Exact Solution of Relativistic Wave Equations (Dordrecht: Kluwer)
|
[26] |
Dong S H and Gonzalez-Cisneros A 2008 Ann. Phys. 323 1136
|
[27] |
Miranda M G, Sun G H and Dong S H 2010 Int. J. Mod. Phys. E 19 123
|
[28] |
Ghasemi A, Hooshmandasl M R and Tavassoly M K 2011 Phys. Scr. 84 035007
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|