Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 050302    DOI: 10.1088/1674-1056/22/5/050302
GENERAL Prev   Next  

Quantum information entropies of the eigenstates for the Pöschl-Teller-like potential

Guo-Hua Suna, M. Avila Aokia, Shi-Hai Dongb
a Centro Universitario Valle de Chalco, Universidad Autónoma del Estado de México, Valle de Chalco Solidaridad, Estado de México, 56615, Mexico;
b Departamento de Física, Escuela Superior de Física y Matemátics, Instituto Politécnico Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, Mexico D. F. 07738, Mexico
Abstract  Shannon entropy for lower position and momentum eigenstates of Pöschl-Teller-like potential is evaluated. Based on the entropy densities demonstrated graphically, we note that the wave through of the position information entropy density ρ(x) moves right when the potential parameter V1 increases and its amplitude decreases. However, its wave through moves left with the increase in the potential parameter |V2|. Concerning the momentum information entropy density ρ(p), we observe that its amplitude increases with increasing potential parameter V1, but its amplitude decreases with increasing |V2|. The Bialynicki-Birula-Mycielski (BBM) inequality has also been tested for a number of states. Moreover, there exist eigenstates that exhibit squeezing in the momentum information entropy. Finally, we note that position information entropy increases with V1, but decreases with |V2|. However, the variation of momentum information entropy is contrary to that of the position information entropy.
Keywords:  bound states      quantum information entropy      Pöschl-Teller-like potential  
Received:  22 September 2012      Revised:  31 October 2012      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Ge (Solutions of wave equations: bound states)  
  03.67.-a (Quantum information)  
Fund: Project supported by COFAA-IPN (Grant No. 20120876-SIP-IN).
Corresponding Authors:  Guo-Hua Sun     E-mail:  sunghdb@yahoo.com

Cite this article: 

Guo-Hua Sun, M. Avila Aoki, Shi-Hai Dong Quantum information entropies of the eigenstates for the Pöschl-Teller-like potential 2013 Chin. Phys. B 22 050302

[1] Yáñez R J, van Assche W and Dehesa J S 1994 Phys. Rev. A 50 3065
[2] Aptekarev A I, Dehesa J S and Yáñez R J 1994 J. Math. Phys. 35 4423
[3] Shannon C E 1948 Bell Syst. Tech. J. 27 623
[4] Shannon C E 1993 Collected Papers (New York: IEEE Press)
[5] Everett H 1973 The Many World Interpretation of Quantum Mechanics (Princeton, NJ: Princeton University Press)
[6] Hirschmann Jr I I 1957 Am. J. Math. 79 152
[7] Beckner W 1975 Ann. Math. 102 159
[8] Bialynicki-Birula I and Mycielski J 1975 Commun. Math. Phys. 44 129
[9] Bialynicki-Birula I and Rudnicki L 2010 arXive: 1001.4668 [quant-ph]
[10] Orlowski A 1997 Phys. Rev. A 56 2545
[11] Atre R, Kumar A, Kumar C N and Panigrahi P 2004 Phys. Rev. A 69 052107
[12] Romera E and de los Santos F 2007 Phys. Rev. Lett. 99 263601
[13] Galindo A and Pascual P 1978 Quantum Mechanics (Berlin: Springer)
[14] Angulo J C, Antolin J, Zarzo A and Cuchi J C 1999 Eur. Phys. J. D 7 479
[15] Majernik V and Opatrný T 1996 J. Phys. A 29 2187
[16] Dehesa J S, Martínez-Finkelshtein A and Sorokin V N 2006 Mol. Phys. 104 613
[17] Coffey M W 2007 Can. J. Phys. 85 733
[18] Aydiner E, Orta C and Sever R 2008 Int. J. Mod. Phys. B 22 231
[19] Popov D 2001 Buletinul Stiintific al Universitatii "Politehnica" din Timisoara, Seria Matematica-Fizica 46 60
[20] Dehesa J S, van Assche W and Yáñez R J 1997 Methods Appl. Math. 4 91
[21] Kumar A 2005 Ind. J. Pure. Appl. Phys. 43 958
[22] Buyarov V S, López-Artés P, Martínez-Finkelshtein A and van Assche W 2000 J. Phys. A 33 6549
[23] Katriel J and Sen K D 2010 J. Comp. Appl. Math. 233 1399
[24] Fu B B and Gao Z Y 2006 Chin. Phys. Lett. 23 520
[25] Bagrov V G and Gitman D M 1990 Exact Solution of Relativistic Wave Equations (Dordrecht: Kluwer)
[26] Dong S H and Gonzalez-Cisneros A 2008 Ann. Phys. 323 1136
[27] Miranda M G, Sun G H and Dong S H 2010 Int. J. Mod. Phys. E 19 123
[28] Ghasemi A, Hooshmandasl M R and Tavassoly M K 2011 Phys. Scr. 84 035007
[1] Wave function collapses and 1/n energy spectrum induced by a Coulomb potential in a one-dimensional flat band system
Yi-Cai Zhang(张义财). Chin. Phys. B, 2022, 31(5): 050311.
[2] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[3] Electronic structures of vacancies in Co3Sn2S2
Yuxiang Gao(高于翔), Xin Jin(金鑫), Yixuan Gao(高艺璇), Yu-Yang Zhang(张余洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2021, 30(7): 077102.
[4] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
[5] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
[6] Detection of spin current through a quantum dot with Majorana bound states
Ning Wang(王宁), Xingtao An(安兴涛), and Shuhui Lv(吕树慧). Chin. Phys. B, 2021, 30(10): 100302.
[7] Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy
Jia Liu(刘佳), Ke-Man Li(李科曼), Feng Chi(迟锋), Zhen-Guo Fu(付振国), Yue-Fei Hou(侯跃飞), Zhigang Wang(王志刚), Ping Zhang(张平). Chin. Phys. B, 2020, 29(7): 077302.
[8] Bound in continuum states and induced transparency in mesoscopic demultiplexer with two outputs
Z Labdouti, T Mrabti, A Mouadili, E H El Boudouti, F Fethi, and B Djafari-Rouhani. Chin. Phys. B, 2020, 29(12): 127301.
[9] Bound states resulting from interaction of the non-relativistic particles with the multiparameter potential
Ahmet Taş, Ali Havare. Chin. Phys. B, 2017, 26(10): 100301.
[10] Bound states of Dirac fermions in monolayer gapped graphene in the presence of local perturbations
Mohsen Yarmohammadi, Malek Zareyan. Chin. Phys. B, 2016, 25(6): 068105.
[11] Quantum information entropy for one-dimensional system undergoing quantum phase transition
Xu-Dong Song(宋旭东), Shi-Hai Dong(董世海), Yu Zhang(张宇). Chin. Phys. B, 2016, 25(5): 050302.
[12] Resonant Andreev reflection in a normal-metal/quantum-dot/superconductor system with coupled Majorana bound states
Su-Xin Wang(王素新), Yu-Xian Li(李玉现), Jian-Jun Liu(刘建军). Chin. Phys. B, 2016, 25(3): 037304.
[13] Particle-hole bound states of dipolar molecules in an optical lattice
Zhang Yi-Cai (张义财), Wang Han-Ting (汪汉廷), Shen Shun-Qing (沈顺清), Liu Wu-Ming (刘伍明). Chin. Phys. B, 2013, 22(9): 090501.
[14] Relativistic solutions for diatomic molecules subject to pseudoharmonic oscillator in arbitrary dimensions
Sami Ortakaya. Chin. Phys. B, 2013, 22(7): 070303.
[15] Pure spin polarized transport based on Rashba spin–orbit interaction through the Aharonov–Bohm interferometer embodied four-quantum-dot ring
Wu Li-Jun (吴丽君), Han Yu (韩宇). Chin. Phys. B, 2013, 22(4): 047302.
No Suggested Reading articles found!