Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 040301    DOI: 10.1088/1674-1056/22/4/040301
GENERAL Prev   Next  

Spinless particles in the field of unequal scalar–vector Yukawa potentials

M. Hamzavia, S. M. Ikhdairb c, K. E. Thylwed
a Department of Science and Engineering, Abhar Branch, Islamic Azad University, Abhar, Iran;
b Department of Electrical and Electronic Engineering, Near East University, 922022 Nicosia, North Cyprus, Mersin 10, Turkey;
c Department of Physics, Faculty of Science, An-Najah National University, Nablus, West Bank, Palestine;
d KTH-Mechanics, Royal Institute of Technology, S-100 44 Stockholm, Sweden
Abstract  We present analytical bound state solutions of the spin-zero Klein-Gordon (KG) particles in the field of unequal mixture of scalar and vector Yukawa potentials within the framework of the approximation scheme to the centrifugal potential term for any arbitrary l-state. The approximate energy eigenvalues and unnormalized wave functions are obtained in closed forms using a simple shortcut of Nikiforov-Uvarov (NU) method. Further, we solve the KG-Yukawa problem for its exact numerical energy eigenvalues via amplitude phase (AP) method to test the accuracy of the present solutions found by using the NU method. Our numerical tests using energy calculations demonstrate the existence of inter-dimensional degeneracy amongst the energy states of KG-Yukawa problem. The dependence of the energy on the dimension D is numerically discussed for spatial dimensions D=2-6.
Keywords:  Klein-Gordon equation      Yukawa potential      D-dimensional space      Nikiforov–Uvarov and amplitude phase methods  
Received:  30 June 2012      Revised:  16 October 2012      Accepted manuscript online: 
PACS:  03.65.Fd (Algebraic methods)  
  03.65.Pm (Relativistic wave equations)  
  03.65.Ca (Formalism)  
  03.65.Ge.  
Corresponding Authors:  M. Hamzavi, S. M. Ikhdair, K. E. Thylwe     E-mail:  majid.hamzavi@gmail.com; sikhdair@neu.edu.tr, sikhdair@gmail.com; ket@mech.kth.se

Cite this article: 

M. Hamzavi, S. M. Ikhdair, K. E. Thylwe Spinless particles in the field of unequal scalar–vector Yukawa potentials 2013 Chin. Phys. B 22 040301

[1] Yukawa H 1935 Proc. Phys. Math. Soc. Jpn. 17 48
[2] McEnnan J, Kissel L and Pratt R H 1976 Phys. Rev. A 13 532
[3] Mehta C H and Patil S H 1978 Phys. Rev. A 17 34
[4] Dutt R and Varshni Y P 1983 Z. Phys. A 313 143
[5] Dutt R and Varshni Y P 1986 Z. Phys. D 2 207
[6] Lai C S and Madan M P 1984 Z. Phys. A 316 131
[7] Imbo T, Pagnamenta A and Sukhatme U 1984 Phys. Lett. A 105 183
[8] Chakrabarti B and Das T K 2001 Phys. Lett. A 285 11
[9] Ikhdair S M and Sever R 2006 Int. J. Mod. Phys. A 21 6465
[10] Ikhdair S M and Sever R 2007 J. Mol. Struct.: Theochem 809 103
[11] Zhang M C 2008 Chin. Phys. B 17 3214
[12] Chargui Y, Chetouani L and Trabelsi A 2010 Chin. Phys. B 19 020305
[13] Zhou Y and Guo J Y 2008 Chin. Phys. B 17 380
[14] Zeng X X and Li Q 2009 Chin. Phys. B 18 4716
[15] Xu J J, Ni G J and Lou S Y 2011 Chin. Phys. B 20 020302
[16] Li H L 2011 Chin. Phys. B 20 030402
[17] Taşkin F and Koçak G 2011 Chin. Phys. B 20 070302
[18] Zhou S Q 2008 Chin. Phys. B 17 3812
[19] Ma Z Y and Ma S H 2012 Chin. Phys. B 21 030507
[20] Chen C Y, Lu F L and You Y 2012 Chin. Phys. B 21 030302
[21] Hamzavi M, Eshghi M and Ikhdair S M 2012 J. Math. Phys. 53 082101
[22] Lu F L and Chen C Y 2010 Chin. Phys. B 19 100309
[23] Taskin F and Koçak G 2010 Chin. Phys. B 19 090314
[24] Wei G F and Chen W L 2010 Chin. Phys. B 19 090308
[25] Sun G H and Dong S H 2012 Commun. Theor. Phys. 58 195
[26] Ikhdair S M and Hamzavi M 2012 Chin. Phys. B 21 110302
[27] Kocak M and Gonül B 2007 Chin. Phys. Lett. 24 3024
[28] Su K L 1997 Chin. Phys. Lett. 14 721
[29] Long C Y, Qin S J, Zhang X and Wei G F 2008 Acta Phys. Sin. 57 6730 (in Chinese)
[30] Wang Z B and Zhang M C 2007 Acta Phys. Sin. 56 3688 (in Chinese)
[31] Zhang M C and Wang Z B 2006 Acta Phys. Sin. 55 525 (in Chinese)
[32] Zhang M C and Wang Z B 2006 Acta Phys. Sin. 55 521 (in Chinese)
[33] Lu F L and Chen C Y 2004 Acta Phys. Sin. 53 1652 (in Chinese)
[34] Chen G 2004 Acta Phys. Sin. 53 684 (in Chinese)
[35] Qiang W C 2002 Chin. Phys. 11 757
[36] Li H M 2002 Chin. Phys. 11 1111
[37] Fan H Y and Sun M Z 2001 Chin. Phys. 10 380
[38] Li G L, Yue R H, Shi K J and Hou B Y 2001 Chin. Phys. 10 113
[39] Lu H X, Zhang Y D and Wang X Q 2000 Chin. Phys. 9 325
[40] Jing H and Wu J S 2000 Chin. Phys. 9 481
[41] Chen C Y 2000 Chin. Phys. 9 731
[42] Liu K J, Zhang Y D, Lu H X and Pan J W 2000 Chin. Phy. 9 5
[43] Qiang W C 2003 Chin. Phys. 12 1054
[44] Ni Z X 1999 Chin. Phys. 8 8
[45] Dong S H 2011 Wave Equations in Higher Dimensions (Berlin: Springer-Verlag) pp. 181-202
[46] Ikhdair S M 2011 J. Quantum Inf. Sci. 1 73
[47] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Berlin: Birkhausr)
[48] Ikhdair S M 2009 Int. J. Mod. Phys. C 20 25
[49] Tezcan C and Sever R 2009 Int. J. Theor. Phys. 48 337
[50] Korsch H J and Laurent H 1981 J. Phys. B: At. Mol. Phys. 14 4213
[51] Yano T, Ezawa Y, Wada T and Ezawa H 2003 J. Comp. Appl. Math. 152 597
[52] Thylwe K E 2004 J. Phys. A: Math. Gen. 37 L589
[53] Thylwe K E 2009 Eur. Phys. J. D 54 591
[54] Setare M R and Haidari S 2010 Phys. Scr. 81 065201
[55] Aydoğdu O and Sever R 2011 Phys. Scr. 84 025005
[56] Ikhdair S M 2012 Cent. Eur. J. Phys. 10 361
[57] Hamzavi M, Ikhdair S M and Solaimani M 2012 Int. J. Mod. Phys. E 21 1250016
[58] Hamzavi M, Movahedi M, Thylwe K E and Rajabi A A 2012 Chin. Phys. Lett. 29 080302
[59] Karakoç M and Boztosun I 2006 Int. J. Mod. Phys. E 15 1253
[60] Ikhdair S M and Sever R 2009 J. Math. Chem. 45 1137
[1] Relativistic solutions for diatomic molecules subject to pseudoharmonic oscillator in arbitrary dimensions
Sami Ortakaya. Chin. Phys. B, 2013, 22(7): 070303.
[2] The Yukawa potential in semirelativistic formulation via supersymmetry quantum mechanics
S. Hassanabadi, M. Ghominejad, S. Zarrinkamar, H. Hassanabadi. Chin. Phys. B, 2013, 22(6): 060303.
[3] Analytical approximate solution for nonlinear space-time fractional Klein–Gordon equation
Khaled A. Gepreel, Mohamed S. Mohamed. Chin. Phys. B, 2013, 22(1): 010201.
[4] Dirac equation for the Hulthén potential within the Yukawa-type tensor interaction
Oktay Aydoğdu, Elham Maghsoodi, Hassan Hassanabadi. Chin. Phys. B, 2013, 22(1): 010302.
[5] Approximate solution of the spin-one Duffin-Kemmer-Petiau (DKP) equation under a non-minimal vector Yukawa potential in (1+1)-dimensions
H. Hassanabadi, Z. Molaee. Chin. Phys. B, 2012, 21(12): 120304.
[6] Effects of external fields on two-dimensional Klein–Gordon particle under pseudo-harmonic oscillator interaction
Sameer M. Ikhdair, Majid Hamzavi. Chin. Phys. B, 2012, 21(11): 110302.
[7] Bound states of the Klein-Gordon and Dirac equations for potential V0tanh2(r/d)
Qiang Wen-Chao (强稳朝). Chin. Phys. B, 2004, 13(5): 571-574.
[8] Bound states of the Klein-Gordon equation for ring-shaped Kratzer-type potential
Qiang Wen-Chao (强稳朝). Chin. Phys. B, 2004, 13(5): 575-578.
[9] Bound states of the Klein-Gordon and Dirac equation for scalar and vector pseudoharmonic oscillator potentials
Chen Gang (陈刚), Chen Zi-Dong (陈子栋), Lou Zhi-Mei (楼智美). Chin. Phys. B, 2004, 13(3): 279-282.
[10] Electron scattering from molecule CH4 at 10-5000eV
Liu Yu-Fang (刘玉芳), Zhu Zun-Lüe (朱遵略), Sun Jin-Feng (孙金锋), Cong Shu-Lin (丛书林), Han Ke-Li (韩克利). Chin. Phys. B, 2003, 12(7): 750-752.
[11] Explicit and exact travelling plane wave solutions of the (2+1)-dimensional Boussinesq equation
Huang Wen-Hua (黄文华), Jin Mei-Zhen (金美贞). Chin. Phys. B, 2003, 12(4): 361-364.
[12] Bound states of Klein-Gordon equation for ring-shaped harmonic oscillator scalar and vector potentials
Qiang Wen-Chao (强稳朝). Chin. Phys. B, 2003, 12(2): 136-139.
[13] Bound states of the Klein-Gordon and Dirac equations for potential $V(r)=Ar^{-2}-Br^{-1}$
Qiang Wen-Chao (强稳朝). Chin. Phys. B, 2003, 12(10): 1054-1057.
[14] Bound states of the Klein-Gordon and Dirac equations for scalar and vector harmonic oscillator potentials
Qiang Wen-Chao (强稳朝). Chin. Phys. B, 2002, 11(8): 757-759.
[15] Mapping deformation method and its application to nonlinear equations
Li Hua-Mei (李画眉). Chin. Phys. B, 2002, 11(11): 1111-1114.
No Suggested Reading articles found!