Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 067501    DOI: 10.1088/1674-1056/22/6/067501
Special Issue: TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research Prev   Next  

Mn-based antiperovskite functional materials: Review of research

Tong Peng (童鹏)a, Wang Bo-Sen (王铂森)a, Sun Yu-Ping (孙玉平)a b
a Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China;
b High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
Abstract  Our recent research on the Mn-based antiperovskite functional materials AXMn3 (A: metal or semiconducting elements; X: C or N) is outlined. Antiperovskite carbides (e.g., AlCMn3) show large magnetocaloric effect comparable to those of typical magnetic refrigerant materials. Enhanced giant magnetoresistance up to 70% at 50 kOe (1 Oe = 79.5775 A·m-1) over a wide temperature span was obtained in Ga1-xZnxCMn3 and GaCMn3-xNix. In Cu0.3Sn0.5NMn3.2, negative thermal expansion (NTE) was achieved in a wide temperature region covering room temperature (α = -6.8 ppm/K, 150 K-400 K). Neutron pair distribution function analysis suggests the Cu/Sn-Mn bond fluctuation is the driving force for the NTE in Cu1-xSnxNMn3. In CuN1-xCxMn3 and CuNMn3-yCoy, the temperature coefficient of resistivity (TCR) decreases monotonically from positive to negative as Co or C content increases. TCR is extremely low when the composition approaches the critical points. For example, TCR is ~ 1.29 ppm/K between 240 K and 320 K in CuN0.95C0.05Mn3, which is one twentieth of that in the typical low-TCR materials (~ 25 ppm/K). By studying the critical scaling behavior and X deficiency effect, some clues of localized-electron magnetism have been found against the background of electronic itinerant magnetism.
Keywords:  antiperovskite      magnetocaloric effect      giant magnetoresistance      negative thermal expansion  
Received:  26 April 2013      Accepted manuscript online: 
PACS:  75.20.En (Metals and alloys)  
  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.47.De (Giant magnetoresistance)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174295, 51001094, 91222109, 51171177, and 50701042) and the National Key Basic Research of China (Grant No. 2011CBA00111).
Corresponding Authors:  Sun Yu-Ping     E-mail:  ypsun@issp.ac.cn

Cite this article: 

Tong Peng (童鹏), Wang Bo-Sen (王铂森), Sun Yu-Ping (孙玉平) Mn-based antiperovskite functional materials: Review of research 2013 Chin. Phys. B 22 067501

[1] Bednorz J G and Mueller K A 1986 Z. Phys. B: Condens. Matter 64189
[2] Ahn C H, Tybell T, Antognazza L, Char K, Hammond R H, Beasley MR, Fischer O and Triscone J M 1997 Science 276 1100
[3] Nagaev E L 2001 Phys. Rep. 346 387
[4] Fruchart D and Bertaut E F 1978 J. Phys. Soc. Jpn. 44 781
[5] Fruchart D, Bertaut E F, Sayetat F, Eddine M N, Fruchart R andSénateur J P 1970 Solid State Commun. 8 91
[6] Takei W J, Heikes R R and Shirane G 1962 Phys. Rev. 125 1893
[7] Kenmotsu A, Shinohara T and Watanabe H 1972 J. Phys. Soc. Jpn. 32377
[8] Khoi L D, Fruchart M E and Fruchart M R 1970 Solid State Commun.8 49
[9] Navarro R, Rojo J A, García J, González D, Bartolomé J and L’HéritierPh 1986 J. Magn. Magn. Mater. 59 221
[10] Bouchaud J P, Fruchart R, Pauthenet R, Guillot M, Bartholin H andChaissé F 1966 J. Appl. Phys. 37 971
[11] L’Héritier Ph, Boursier D, Fruchart R and Fruchart D 1979 Mater. Res.Bull. 14 1203
[12] Keneko T, Kanomata T, Miura S, Kido G and Nakagawa Y 1987 J.Magn. Magn. Mater. 70 261
[13] He T, Huang Q, Ramirez A P, Wang Y, Regan K A, Rogado N, HaywardM A, Haas M K, Slusky K S, Inumara K, Zandbergen H W, OngP N and Cava R J 2001 Nature (London) 411 54
[14] Kamishima K, Goto T, Nakagawa H, Miura N, Ohashi M, Mori N,Sasaki T and Kanomata T 2000 Phys. Rev. B 63 024426
[15] Li Y B, Li W F, Feng W J, Zhang Y Q and Zhang Z D 2005 Phys. Rev.B 72 024411
[16] Yu M H, Lewis L H and Moodenbaugh A R 2003 J. Appl. Phys. 9310128
[17] Tohei T, Wada H and Kanomata T 2004 J. Magn. Magn. Mater. 272-276 e585
[18] Sun N K, Li Y B, Liu F and Ji T B 2012 J. Mater. Sci. Technol. 28 941
[19] Takenaka K and Takagi H 2005 Appl. Phys. Lett. 87 261902
[20] Sun Y, Wang C, Wen Y C, Zhu K G and Zhao J T 2007 Appl. Phys.Lett. 91 231913
[21] Takenaka K, Asano K, Misawa M and Takagi H 2008 Appl. Phys. Lett.92 011927
[22] Huang R J, Li L F, Cai F S, Xu X D and Qian L H 2008 Appl. Phys.Lett. 93 081902
[23] Wang C, Chu L H, Yao Q R, Sun Y, Wu M M, Ding L, Yan J, Na YY, Tang W H, Li G N, Huang Q Z and Lynn J W 2012 Phys. Rev. B 85220103
[24] Song X Y, Sun Z H, Huang Q Z, Rettenmayr M, Liu X M, Seyring M,Li G N, Rao G H and Yin F X 2011 Adv. Mater. 23 4690
[25] Chi E O, Kim W S and Hur N H 2001 Solid State Commun. 120 307
[26] Takenaka K, Ozawa A, Shibayama T, Kaneko N, Oe T and Urano C2011 Appl. Phys. Lett. 98 022103
[27] Ding L, Wang C, Chu L H, Yan J, Na Y Y, Huang Q Z and Chen X L2011 Appl. Phys. Lett. 99 251905
[28] Asano K, Koyama K and Takenaka K 2008 Appl. Phys. Lett. 92 161909
[29] Nakamura Y, Takenaka K, Kishimoto A and Takagi H 2009 J. Am Ceram.Soc. 92 2999
[30] Shim J H, Kwon S K and Min B I 2002 Phys. Rev. B 66 020406
[31] Hua L, Wang L and Chen L F 2010 J. Phys.: Condens. Matter 22206003
[32] Lewis L H, Yoder D, Moodenbaugh A R and Yu M H 2006 J. Phys.:Condens. Matter 18 1677
[33] Kim W S, Chi E O, Kim J C, Choi H S and Hur N H 2001 Solid StateCommun. 119 507
[34] Tahara D, Motome Y and Imada M 2007 J. Phys. Soc. Jpn. 76 013708
[35] Takenaka K, Inagaki T and Takagi H 2009 Appl. Phys. Lett. 95 132508
[36] Kaneko T, Kanomata T and Shirakawa K 1987 J. Phys. Soc. Jpn. 564047
[37] Kamishima K, Bartashevich M I, Goto T, Kikuchi M and Kanomata T1998 J. Phys. Soc. Jpn. 67 1748
[38] Wang B S, Tong P, Sun Y P, Li L J, Tang W, Lu W J, Zhu X B, Yang ZR and Song W H 2009 Appl. Phys. Lett. 95 222509
[39] Wang B S, Li C C, Lin J C, Lin S, Tong P, Zhu X B, Zhao B C, Lu WJ, Yang Z R, Song W H, Dai J M and Sun Y P 2010 Appl. Phys. Lett.97 142505
[40] Chattopadhyay M K and Roy S B 2008 J. Phys.: Condens. Matter 20025209
[41] Zhang Y Q, Zhang Z D and Aarts J 2004 Phys. Rev. B 70 132407
[42] Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H, Zhang B andZhang X X 2006 Appl. Phys. Lett. 89 162503
[43] Zhang Y Q and Zhang Z D 2003 Phys. Rev. B 67 132405
[44] Wang B S, Tong P, Sun Y P, Song W H, Yang Z R and Dai J M 2009 J.Appl. Phys. 106 013906
[45] Wang B S, Tong P, Sun Y P, Luo X, Zhu X B, Li G, Zhu X D, Zhang SB, Yang Z R, Song W H and Dai J M 2009 Europhys. Lett. 85 47004
[46] Wang B S, Tong P, Sun Y P, Tang W, Li L J, Zhu X B, Yang Z R andSong W H 2010 J. Magn. Magn. Mater. 322 163
[47] Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv.Mater. 21 4545
[48] Pecharsky V K and Gschneidner K A Jr 1997 Phys. Rev. Lett. 78 4494
[49] Wada H and Tanabe Y 2001 Appl. Phys. Lett. 79 3302
[50] Hu F X, Shen B G, Sun J R and Zhang X X 2000 Chin. Phys. 9 550
[51] Guo Z B, Du Y W, Zhu J S, Huang H, Ding W P and Feng D 1997Phys. Rev. Lett. 78 1142
[52] Liu J, Gottschall T, Skokov K P, Moore J D and Gutfleisch O 2012 Nat.Mater. 11 620
[53] Wang B S, Tong P, Sun Y P, Zhu X B, Luo X, Li G, Song W H, YangZ R and Dai J M 2009 J. Appl. Phys. 105 083907
[54] Wang B S, Li C C, Lin S, Lin J C, Tong P, Lu W J, Zhu Z B, Yang ZR, Song W H, Dai J M and Sun Y P 2011 J. Magn. Magn. Mater. 3232017
[55] Wang B S, Tong P, Sun Y P, Tang W, Li L J, Zhu X B, Yang Z R andSong W H 2010 Physica B 405 2427
[56] Wang B S, Lin J C, Tong P, Zhang L, Lu W J, Zhu X B, Yang Z R,Song W H, Dai J M and Sun Y P 2010 J. Appl. Phys. 108 093925
[57] Wang B S, Lu W J, Lin S, Lin J C, Tong P, Song W H and Sun Y P2012 J. Magn. Magn. Mater. 324 773
[58] Tishin A M 2007 J. Magn. Magn. Mater. 316 351
[59] Yu B F, Liu M, Egolf P W and Kitanovski A 2010 Int. J. Refrigeration33 1029
[60] Takenaka K 2012 Sci. Technol. Adv. Mater. 13 013001
[61] Mary T A, Evans J S O, Vogt T and Sleight A W 1996 Science 272 90
[62] Sun Y, Wang C, Wen Y C, Chu L H, Pan H and Nie M 2010 J. Am.Ceram. Soc. 93 2178
[63] Lin J C, Wang B S, Lin S, Tong P, Lu W J, Zhang L, Zhao B C, SongW H and Sun Y P 2012 J. Appl. Phys. 111 113914
[64] Lin J C, Wang B S, Lin S, Tong P, Lu W J, Zhang L, Song W H andSun Y P 2012 J. Appl. Phys. 111 043905
[65] Iikubo S, Kodama K, Takenaka K, Takagi H and Shamoto S 2008 Phys.Rev. B 77 020409
[66] Iikubo S, Kodama K, Takenaka K, Takagi H, TakigawaMand ShamotoS 2008 Phys. Rev. Lett. 101 205901
[67] Tong P, Louca D, King G, Llobet A, Lin J C and Sun Y P 2013 Appl.Phys. Lett. 102 041908
[68] Matsuno J, Takenaka K, Takagi H, Matsumura D, Nishihata Y andMizuki J 2009 Appl. Phys. Lett. 94 181904
[69] Takenaka K and Takagi H 2006 Mater. Trans. 47 471
[70] Phuong N M, Kim D J, Kang B D, Kim C S and Yoon S G 2006 J.Electrochem. Soc. 153 G27
[71] Kuo C C Y 1996 16th Capacitor and Resistor Technology Symposium1996 CARTS ’96, p. 266
[72] Kagomiya I, Matsumoto S, Kakimoto K, Ohsato H, Sakai H and MaedaY 2009 Mater. Lett. 63 2452
[73] Lin J C, Wang B S, Tong P, Lin S, Lu W J, Zhu X B, Yang Z R, SongW H, Dai J M and Sun Y P 2011 Scr. Mater. 65 452
[74] Lin J C, Tong P,Wang B S, Lin S, LuWJ, Zhao B C and Sun Y P 2013Phys. Express 3 33
[75] Heller P 1967 Rep. Prog. Phys. 30 731
[76] Yang J, Lee Y P and Li Y 2007 Phys. Rev. B 76 054442
[77] Zhang L, Wang B S, Sun Y P, Tong P, Fan J Y, Zhang C J, Pi L andZhang Y H 2012 Phys. Rev. B 85 104419
[78] Wang B S 2011 Study on the Physical Properties of Manganese BasedAntiperovskite Carbon Compounds (Ga, Al, Sn)CMn3 (Ph. D. Dissertation)(Hefei: Chinese Academy of Sciences) (in Chinese)
[79] Lin J C, Wang B S, Tong P, Sun Y P, Zhu X B, Yang Z R, Song W Hand Dai J M 2011 Appl. Phys. Lett. 98 092507
[80] Shao D F, LuWJ, Lin J C, Tong P, Jian H B and Sun Y P 2013 J. Appl.Phys. 113 023905
[81] Tong P, Sun Y P, Zhao B C, Zhu X B and Song W H 2006 Solid StateCommun. 138 64
[82] Tong P, Sun Y P, Zhu X B and SongWH 2006 Phys. Rev. B 73 245106
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[3] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[4] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[5] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[6] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[7] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[8] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[9] Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands
Qilong Gao(高其龙), Yixin Jiao(焦怡馨), and Gang Li(李纲). Chin. Phys. B, 2022, 31(4): 046501.
[10] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[11] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[12] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[13] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[14] Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate
Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军). Chin. Phys. B, 2021, 30(6): 066501.
[15] Negative thermal expansion in NbF3 and NbOF2: A comparative theoretical study
Mingyue Zhang(张明月), Chunyan Wang(王春艳), Yinuo Zhang(张一诺), Qilong Gao(高其龙), and Yu Jia(贾瑜). Chin. Phys. B, 2021, 30(5): 056501.
No Suggested Reading articles found!