ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Unified analytical treatments to qubit-oscillator systems |
He Shu (贺树)a, Zhang Yu-Yu (张瑜瑜)b, Chen Qing-Hu (陈庆虎)c d, Ren Xue-Zao (任学藻)a, Liu Tao (刘涛)a, Wang Ke-Lin (汪克林)e |
a School of Science, Southwest University of Science and Technology, Mianyang 621010, China; b Center for Modern Physics, Chongqing University, Chongqing 400044, China; c Department of Physics, Zhejiang University, Hangzhou 310027, China; d Center for Statistical and Theoretical Condensed Matter Physics, Zhejiang Normal University, Jinhua 321004, China; e Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract An effective scheme within two displaced bosonic operators with equal positive and negative displacements is extended to study the qubit-oscillator systems analytically in a unified way. Many previous analytical treatments, such as generalized rotating-wave approximation (GRWA) [Phys. Rev. Lett. 99, 173601 (2007)] and an expansion in the qubit tunneling matrix element in the deep strong coupling regime [Phys. Rev. Lett. 105, 263603 (2010)] can be recovered straightforwardly within the present scheme. Moreover, further improving GRWA and the extension to the finite-bias case are implemented easily. The algebraic formulae for the eigensolutions are then derived explicitly and uniquely, which work well in a wide range of the coupling strengthes, detunings, and static bias including the recent experimentally accessible parameters. The dynamics of the qubit for an oscillator in ground-state is also studied. At the experimentally accessible coupling regime, GRWA can always work well. When the coupling is enhanced to the intermediate regime, only the improving GRWA can give the correct description, while the result of GRWA shows strong deviations. The previous Van Vleck perturbation theory is not valid to describe the dynamics in the present-day experimentally accessible regime, except for the strongly biased cases.
|
Received: 21 August 2012
Revised: 16 October 2012
Accepted manuscript online:
|
PACS:
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
03.65.Ge
|
(Solutions of wave equations: bound states)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 11174254 and 11104363), the National Basic Research Program of China (Grant Nos. 2011CBA00103 and 2009CB929104), and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20110191120046). |
Corresponding Authors:
Zhang Yu-Yu
E-mail: yuyuzh@cqu.edu.cn; qhchen@zju.edu.cn
|
Cite this article:
He Shu (贺树), Zhang Yu-Yu (张瑜瑜), Chen Qing-Hu (陈庆虎), Ren Xue-Zao (任学藻), Liu Tao (刘涛), Wang Ke-Lin (汪克林) Unified analytical treatments to qubit-oscillator systems 2013 Chin. Phys. B 22 064205
|
[1] |
Buluta I and Nori F 2009 Science 326 108; Buluta I, Ashhab S and Nori F 2011 Rep. Prog. Phys. 74 104401
|
[2] |
Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys 73 565; Mabuchi H and Doherty A C 2002 Science 298 1372
|
[3] |
Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
|
[4] |
You J Q and Nori F 2009 Phys. Today 58 42
|
[5] |
You J Q and Nori F 2011 Nature 474 589
|
[6] |
You J Q, Tsai J S and Nori F 2003 Phys. Rev. B 68 024510
|
[7] |
You J Q and Nori F 2003 Phys. Rev. B 68 064509
|
[8] |
Nation P D, Johansson J R, Blencowe M P and Nori F 2012 Rev. Mod. Phys. 84 1
|
[9] |
Shevchenko S N, Ashhab S and Nori F 2010 Phys. Rep. 492 1
|
[10] |
Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
|
[11] |
Chiorescu I, Bertet P, Semba K, Nakamura, Harmans C J P M and Mooij J E 2004 Nature 431 159
|
[12] |
Johansson J, Saito S, Meno T, Nakano H, Ueda M, Semba K and Takayanagi H 2006 Phys. Rev. Lett. 96 127006
|
[13] |
Wang H, Hofheinz M, Ansmann M, Bialczak R C, Lucero E, Neeley M, OConnell A D, Sank D, Wenner J, Cleland A N and Martinis J M 2008 Phys. Rev. Lett. 101 240401
|
[14] |
Hofheinz M, Wang H, Ansmann M, Bialczak R C, Lucero E, Neeley M, O'Connell A D, Sank D, Wenner J, Martinis J M and Cleland A N 2009 Nature 459 546
|
[15] |
Deppe F, Mariantoni M, Menzel E P, Marx A, Saito S, Kakuyanagi K, Tanaka H, Meno T, Semba K, Takayanagi H, Solano E and Gross R 2008 Nat. Phys. 4 686
|
[16] |
Fink J M, Göppl M, Baur M, Bianchetti R, Leek P J, Blais A and Wallraff A 2008 Nature 454 315
|
[17] |
Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hmmer T, Solano E, Marx A and Gross R 2010 Nat. Phys. 6 772
|
[18] |
Forn-Díaz P, Lisenfeld J, Marcos D, García-Ripoll J J, Solano E, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 237001
|
[19] |
Fedorov A, Feofanov A K, Macha P, Forn-Díaz P, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 060503
|
[20] |
Werlang T, Dodonov A V, Duzzioni E I and Villas-Bôas C J 2008 Phys. Rev. A 78 053805
|
[21] |
Zueco D, Reuther G M, Kohler S and Hänggi P 2009 Phys. Rev. A 80 033846
|
[22] |
Ashhab S and Nori F 2010 Phys. Rev. A 81 042311
|
[23] |
Hausinger J and Grifoni M 2010 Phys. Rev. A 80 062320
|
[24] |
Chen Q H, Li L, Liu T and Wang K L 2012 Chin. Phys. Lett. 29 014208
|
[25] |
Irish E K 2007 Phys. Rev. Lett. 99 173601
|
[26] |
Irish E K 2007 Phys. Rev. Lett. 99 259901
|
[27] |
Chen Q H, Zhang Y Y, Liu T and Wang K L 2008 Phys. Rev. A 78 051801
|
[28] |
Liu T, Wang K L and Feng M 2009 Europhys. Lett. 86 54003
|
[29] |
Chen Q H, Yang Y, Liu T and Wang K L 2010 Phys. Rev. A 82 052306
|
[30] |
Gan C J and Zheng H 2010 Eur. Phys. J. D 59 473
|
[31] |
Casanova J, Romero G, Lizuain I, García-Ripoll J J and Solano E 2010 Phys. Rev. Lett. 105 263603
|
[32] |
Chen Q H, Liu T, Zhang Y Y and Wang K L 2011 Europhys. Lett. 96 14003
|
[33] |
Braak D 2011 Phys. Rev. Lett. 107 100401
|
[34] |
Cao X, You J Q, Zheng H, Kofman A G and Nori F 2010 Phys. Rev. A 82 022119
|
[35] |
Cao X, Ai Q, Sun C P and Nori F 2012 Phys. Lett. A 376 349
|
[36] |
Cao X, You J Q, Zheng H and Nori F 2011 New. J. Phys. 13 073002
|
[37] |
Albert V V, Scholes G D and Brumer P 2011 Phys. Rev. A 84 042110
|
[38] |
Jonasson1 O, Tang C S, Goan H S, Manolescu A and Gudmundsson V 2012 New J. Phys. 14 013036
|
[39] |
Gudmundsson V, Jonasson O, Tang C S, Goan H S and Manolescu A 2012 Phys. Rev. B 85 075306
|
[40] |
Albert V V Phys. Rev. Lett. 108 180401
|
[41] |
Feranchuk I D, Komarov L I and Ulyanenkov A P 1996 J. Phys. A: Math. Gen. 29 4035
|
[42] |
Amniat-Talab M, Guerin S and Jauslin H R 2005 J. Math. Phys. 46 042311
|
[43] |
Zhang Y, Chen G, Yu L, Liang Q, Liang J Q and Jia S 2011 Phys. Rev. A 83 065802
|
[44] |
Fraleigh J B 1994 A First Course in Abstract Algebra 5th edn. (Reading, MA: Addison-Wesley)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|