Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 060308    DOI: 10.1088/1674-1056/22/6/060308
GENERAL Prev   Next  

Cryptanalysis and improvement of the controlled secure direct communication

Kao Shih-Hung, Hwang Tzonelih
National Cheng Kung University, Institute of Computer Science and Information Engineering, Tainan City 701, Taiwan, China
Abstract  This paper points out that, due to a flaw in the sender's encoding, the receiver in Gao et al.'s controlled quantum secret direct communication (CQSDC) protocol [Chin. Phys. 14 (2005), No. 5, p. 893] can reveal the whole secret message without the permission from the controller. An improvement is proposed to avoid this flaw.
Keywords:  quantum cryptography      quantum communication  
Received:  13 November 2012      Revised:  10 January 2013      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: This research is partially supported by the National Science Council, Taiwan, (Grant No. NSC 100-2221-E-006-152-MY3).
Corresponding Authors:  Hwang Tzonelih     E-mail:  hwangtl@ismail.csie.ncku.edu.tw

Cite this article: 

Kao Shih-Hung, Hwang Tzonelih Cryptanalysis and improvement of the controlled secure direct communication 2013 Chin. Phys. B 22 060308

[1] Gao T, Yan F L and Wang Z X 2005 Chin. Phys. 14 893
[2] Gao T, Yan F and Wang Z 2005 Int. J. Quantum Inf. 3 1293
[3] Wang J, Zhang Q and Tang C J 2006 Phys. Lett. A 358 256
[4] Chen X B, Wen Q Y, Guo F Z, Sun Y, Xu G and Zhu F C 2008 Int. J. Quantum Inf. 6 899
[5] Xia Y, Song J and Song H S 2008 Commun. Theor. Phys. 49 919
[6] Zhang L L, Zhan Y B and Zhang Q Y 2009 Int. J. Theor. Phys. 48 2971
[7] Dong L, Xiu X M, Gao Y J, Ren Y P and Liu H W 2011 Opt. Commun. 284 905
[8] Wang T Y, Wen Q Y and Zhu F C 2011 Int. J. Quantum Inf. 9 801
[9] Xiu X M, Dong L and Gao Y J 2011 Opt. Commun. 284 2065
[10] Yang Y G, Chai H P, Teng Y W and Wen Q Y 2011 Int. J. Theor. Phys. 50 395
[11] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[1] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[2] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[3] Quantum private comparison of arbitrary single qubit states based on swap test
Xi Huang(黄曦), Yan Chang(昌燕), Wen Cheng(程稳), Min Hou(侯敏), and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2022, 31(4): 040303.
[4] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[5] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[6] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[7] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[8] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[9] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[10] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[11] Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity
Lu-Cong Lu(陆路聪), Guan-Yu Wang(王冠玉), Bao-Cang Ren(任宝藏), Mei Zhang(章梅), Fu-Guo Deng(邓富国). Chin. Phys. B, 2020, 29(1): 010305.
[12] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[13] Quantum photonic network on chip
Qun-Yong Zhang(张群永), Ping Xu(徐平), Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2018, 27(5): 054207.
[14] Coherent attacks on a practical quantum oblivious transfer protocol
Guang-Ping He(何广平). Chin. Phys. B, 2018, 27(10): 100308.
[15] Cancelable remote quantum fingerprint templates protection scheme
Qin Liao(廖骎), Ying Guo(郭迎), Duan Huang(黄端). Chin. Phys. B, 2017, 26(9): 090302.
No Suggested Reading articles found!