Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 057504    DOI: 10.1088/1674-1056/22/5/057504
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Monte Carlo study of nanowire magnetic properties

R. Masroura b, L. Bahmada, A. Benyoussefb
a Laboratoire de Magnétisme et Physique des Hautes Energies, URAC 12,Université Mohammed V-Agdal, Faculté des Sciences, B.P. 1014, Rabat, Morocco;
b Laboratory of Materials, Process, Environment and Quality, Cady Ayyad University, National School of Applied Sciences, Safi, Morocco
Abstract  In this work, we use Monte Carlo simulations to study the magnetic properties of a nanowire system based on a honeycomb lattice, in the absence as well as in the presence of both an external magnetic field and crystal field. The system is formed with NL layers having spins that can take the values σ =± 1/2 and S=± 1,0. The blocking temperature is deduced, for each spin configuration, depending on the crystal field Δ. The effect of the exchange interaction coupling Jp between the spin configurations σ and S is studied for different values of temperature at fixed crystal field. The established ground-state phase diagram, in the plane (Jp, Δ), shows that the only stable configurations are: (1/2,0), (1/2,+1), and (1/2,-1). The thermal magnetization and susceptibility are investigated for the two spin configurations, in the absence as well as in the presence of a crystal field. Finally, we establish the hysteresis cycle for different temperature values, showing that there is almost no remaining magnetization in the absence of the external magnetic field, and that the studied system exhibits a super-paramagnetic behavior.
Keywords:  Monte Carlo simulations      nanowire      magnetic field      crystal field  
Received:  07 September 2012      Revised:  03 December 2012      Accepted manuscript online: 
PACS:  75.75.+a  
  77.80.B- (Phase transitions and Curie point)  
  71.70.Gm (Exchange interactions)  
  61.46.Fg (Nanotubes)  
Corresponding Authors:  L. Bahmad     E-mail:  bahmad@fsr.ac.ma

Cite this article: 

R. Masrour, L. Bahmad, A. Benyoussef Monte Carlo study of nanowire magnetic properties 2013 Chin. Phys. B 22 057504

[1] Harris P J F 1991 Carbon Nano-wires and Related Structures. New Materials for the Twenty-first Century (Cambridge: Cambridge University Press)
[2] Ball P 1993 Designing the Molecular World: Chemistry at the Frontier (Princeton, NJ: Princeton University Press)
[3] Dresselhaus M S, Dresselhaus G and Eklund P C 1996 Fullerens and Carbon Nano-wires (San Diego: Academic Press)
[4] Carbon Nano-wires. Preparation and Properties 1997 (edited by Ebbesen T W) (Boca Raton, FL: CRC Press)
[5] Iijima S 1991 Nature 56 354
[6] Escrig J, Landeros P, Altbir D, Vogel E E and Vargas P 2007 J. Magn. Magn. Matter 308 233
[7] Lü B, Xu Y, Wu D and Sun Y 2008 Particuology 6 334
[8] Gao J H, Zhan Q F, He W, Sun D L and Cheng Z H 2005 Appl. Phys. Lett. 86 232506
[9] Peng Y, Cullis T, Mobus G, Xu X J and Inkson B 2007 Nanotechnology 18 485704
[10] Hu H N, Chen H Y and Yu S Y 2006 J. Magn. Magn. Matter 299 170
[11] Schaaf P, Zhang K, Lange C, Holz A, Weisheit M and Fähler S 2007 Appl. Surf. Sci. 253 8107
[12] Takata K M and Sumodjo P T A 2007 Electrochimica Acta 52 6089
[13] Liu H R, Lu Q F, Han X F, Liu X G, Xu B S and Jia H S 2012 Appl. Surf. Sci. 258 7401
[14] Konstantinova E 2008 J. Magn. Magn. Matter 320 2721
[15] Bahmad L, Masrour R and Benyoussef A 2012 J. Supercond. Nov. Magn. 25 2015
[16] Masrour R, Bahmad L and Benyoussef A 2012 J. Magn. Magn. Matter (in press)
[17] Bahmad L, Benyoussef A and Ez-Zahraouy H 2002 Phys. Rev. E 66 056117
[18] Xiao C M and Li C S 2007 Acta Phys. Sin. 56 2434 (in Chinese)
[19] Xiao S, Liu M Z, Shang J and Wang H 2012 Chin. Phys. B 21 020514
[20] Xiao S, Liu M Z, Wang J J and Wang H 2011 Chin. Phys. B 20 060509
[21] Zhu Z L, Ding Y L, Wang Z Y, Gu J H and Lu J X 2010 Chin. Phys. B 19 106803
[22] Xiao S, Cai J J, Wang R L, Liu M Z and Liu F 2009 Chin. Phys. B 18 5103
[23] Garcia C, Martinez M F and Gonzalo J A 2003 arXiv:0306355 [cond-mat.stat-mech]
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[3] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[4] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[5] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[6] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[7] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[8] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[9] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[10] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[11] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[12] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[13] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
[14] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[15] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
No Suggested Reading articles found!