Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 034302    DOI: 10.1088/1674-1056/ac1f01
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields

Lixia Zhao(赵丽霞)1, Huimin Shi(史慧敏)1, Isaac Bello2, Jing Hu(胡静)1, Chenghui Wang(王成会)1, and Runyang Mo(莫润阳)1,†
1 Shaanxi Key Laboratory of Ultrasonics, School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China;
2 Department of Chemistry, Ahmadu Bello University, Zaria 810001, Nigeria
Abstract  Microbubbles loaded with magnetic nanoparticles (MMBs) have attracted increasing interests in multimode imaging and drug/gene delivery and targeted therapy. However, the dynamic behaviors generated in diagnostic and therapeutic applications are not clear. In the present work, a novel theoretical model of a single MMB was developed, and the dynamic responses in an infinite viscous fluid were investigated under simultaneous exposure to magnetic and acoustic fields. The results showed that the amplitude reduces and the resonant frequency increases with the strength of the applied steady magnetic field and the susceptibility of the magnetic shell. However, the magnetic field has a limited influence on the oscillating. It is also noticed that the responses of MMB to a time-varying magnetic field is different from a steady magnetic field. The subharmonic components increase firstly and then decrease with the frequency of the magnetic field and the enhanced effect is related to the acoustic driving frequency. It is indicated that there may be a coupling interaction effect between the acoustic and magnetic fields.
Keywords:  magnetic microbubbles      ultrasound      magnetic field      nonlinear oscillation  
Received:  30 April 2021      Revised:  08 August 2021      Accepted manuscript online:  19 August 2021
PACS:  43.25.+y (Nonlinear acoustics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
Fund: The authors acknowledge the support of the National Natural Science Foundation of China (Grant Nos. 12074238 and 11974232).
Corresponding Authors:  Runyang Mo     E-mail:  mmrryycn@snnu.edu.cn

Cite this article: 

Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳) Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields 2022 Chin. Phys. B 31 034302

[1] Sarkar K, Shi W T, Chatterjee D and Forsberg F 2005 J. Acoust. Soc. Am. 118 539
[2] Stride E, Porter C, Prieto A G and Pankhurst Q 2009 Ultrasound Med. Bio. 35 861
[3] Blomley M J K, Cooke J C, Unger E C, Monaghan M J and Cosgrove D O 2001 B. M. J 322 1222
[4] Vlaskou D, Mykhaylyk O and Plank C 2013 Methods Mol. Biol. 948 205
[5] Zhang J, Song L M, Zhang H M, Zhou S J, Jiao Y F, Zhang X G, Zhao Y and Wang Y 2019 Acs Omega 4 4691
[6] Yan L P, Miao W and Li D D 2020 J. Nanosci. Nanotech. 20 6087
[7] Yang F, Li Y X, Chen Z P, Zhang Y, Wu J R and Gu N 2009 Biomaterials 30 3882
[8] Zhao X, Quinto-Su P A and Ohl C D 2009 Phys. Rev. Lett. 102 024501
[9] Gu Y, Chen C, Tu J, Guo X, Wu H and Zhang D 2016 Ultrason. Sonochem. 29 309
[10] Young J B, Schmiedel T and Kang W 1996 Phys. Rev. Lett. 77 48
[11] He W, Yang F, Wu Y H, Wen S, Chen P, Zhang Y and Gu N 2012 Mater. Lett. 68 64
[12] Sciallero C, Grishenkov D, Kothapalli S V V N, Oddo L and Trucco A 2013 J. Acoust. Soc. Am 134 3918
[13] Duan L, Yang F, Song L, Fang K, Tian J L, Liang Y J, Li M X, Xu N, Chen Z D, Zhang Y and Gu N 2015 Soft Matter 11 5492
[14] Stride E, Owen J, Mulvana H, Pankhurst Q, Tang M and Eckersley R 2012 J. Acoust. Soc. Am. 131 3245
[15] Zhang B H, Howuk K, Wu H Y, Gao Y and Jiang X N 2019 Ultrasonics 98 62
[16] Owen J, Rademeyer P, Chung D, Qian C, David H, Constantin C, Peter F, Pankhurst Q A and Stride E 2015 Interface Focus 5 20150001
[17] Steven J L 2014 Phys. Fluids 26 061901
[18] Malvar S, Gontijo R G and Cunha F R 2018 J. Eng. Math. 108 143
[19] Boev M L, Polunin V M, Ryapolov P A, Karpova G V and Prokhoro P A 2014 Acoust. Phys. 60 1134
[20] Mulvana H, Eckersley R J, Tang M X, Pankhurst Q and Stride E 2012 Ultrasound Med. Biol. 38 864
[21] Church C C 1995 J. Acoust. Soc. Am. 97 1510
[22] Zhao L X, Mo R Y and Wang C H 2021 Acta Phys. Sin. 70 014301 (in Chinese)
[23] Chen J, Zhao L X, Wang C H and Mo R Y 2021 J. Magn. Magn. Mater 538 168293
[24] Hosseini S M, Ghasemi E, Fazlali A and Henneke D E 2012 J. Nanopart. Res. 14 1
[25] Chen W Z 2014 Acoustic Cavitation Physics (Beijing:Science Press) pp. 415-417 (in Chinese)
[26] Guo S H 2008 Electrodynamics (3nd edn.) (Beiing:Higher Education Press) pp. 81-86 (in Chinese)
[27] Mo R Y, Wu L Y, Zhan S N and Zhang Y H 2015 Acta Phys. Sin. 64 261 (in Chinese)
[1] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[2] Wideband frequency-dependent dielectric properties of rat tissues exposed to low-intensity focused ultrasound in the microwave frequency range
Xue Wang(王雪), Shi-Xie Jiang, Lin Huang(黄林), Zi-Hui Chi(迟子惠), Dan Wu(吴丹), and Hua-Bei Jiang. Chin. Phys. B, 2023, 32(3): 034305.
[3] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[4] Quantitative ultrasound brain imaging with multiscale deconvolutional waveform inversion
Yu-Bing Li(李玉冰), Jian Wang(王建), Chang Su(苏畅), Wei-Jun Lin(林伟军), Xiu-Ming Wang(王秀明), and Yi Luo(骆毅). Chin. Phys. B, 2023, 32(1): 014303.
[5] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[6] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[7] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[8] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[9] Increasing the ·OH radical concentration synergistically with plasma electrolysis and ultrasound in aqueous DMSO solution
Chao Li(李超), De-Long Xu(徐德龙), Wen-Quan Xie(谢文泉), Xian-Hui Zhang(张先徽), and Si-Ze Yang(杨思泽). Chin. Phys. B, 2022, 31(4): 048706.
[10] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[11] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[12] Numerical simulations of partial elements excitation for hemispherical high-intensity focused ultrasound phased transducer
Yanqiu Zhang(张艳秋), Hao Zhang(张浩), Tianyu Sun(孙天宇), Ting Pan(潘婷), Peiguo Wang(王佩国), and Xiqi Jian(菅喜岐). Chin. Phys. B, 2021, 30(7): 078704.
[13] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[14] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[15] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
No Suggested Reading articles found!