Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 057103    DOI: 10.1088/1674-1056/22/5/057103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structural, magnetic, electronic, and elastic properties of face-centered cubic PuHx (x = 2, 3):GGA (LSDA) + U + SO

Guo Yong (郭咏)a, Ai Juan-Juan (艾娟娟)a, Gao Tao (高涛)a, Ao Bing-Yun (敖冰云)b
a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
b Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907, China
Abstract  We perform first-principles calculations to investigate the structural, magnetic, electronic, and mechanical properties of face-centered cubic (fcc) PuH2 and fcc PuH3 using the full potential linearized augmented plane wave method (FP-LAPW) with the generalized gradient approximation (GGA) and the local spin density approximation (LSDA) taking account of both relativistic and strong correlation effects. The optimized lattice constant a0= 5.371 Å for fcc PuH2 and a0= 5.343 Å for fcc PuH3 calculated in the GGA + sp (spin polarization) + U (Hubbard parameter) + SO (spin-orbit coupling) scheme are in good agreement with the experimental data. The ground state of fcc PuH3 is found to be slightly ferromagnetic. Our results indicate that fcc PuH2 is a metal while fcc PuH3 is a semiconductor with a band gap about 0.35 eV. We note that the SO and the strong correlation between localized Pu 5f electrons are responsible for the band gap of fcc PuH3. The bonds for PuH2 have mainly covalent character while there are covalent bonds in addition to apparent ionicity bonds for PuH3. We also predict the elastic constants of fcc PuH2 and fcc PuH3, which were not observed in the previous experiments.
Keywords:  plutonium hydride      density-functional theory      magnetic and elastic properties      metal-insulator transition  
Received:  30 October 2012      Revised:  25 December 2012      Accepted manuscript online: 
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  71.30.+h (Metal-insulator transitions and other electronic transitions)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 20971114).
Corresponding Authors:  Gao Tao, Ao Bing-Yun     E-mail:  gaotao@scu.edu.cn; aobingyun24@yahoo.com.cn

Cite this article: 

Guo Yong (郭咏), Ai Juan-Juan (艾娟娟), Gao Tao (高涛), Ao Bing-Yun (敖冰云) Structural, magnetic, electronic, and elastic properties of face-centered cubic PuHx (x = 2, 3):GGA (LSDA) + U + SO 2013 Chin. Phys. B 22 057103

[1] Moore K T and van der Laan G 2009 Rew. Mod. Phys. 81 235
[2] Ao B Y, Ai J J, Gao T, Wang X L, Shi P, Chen P H and Ye X Q 2012 Chin. Phys. Lett. 29 017102
[3] Ai J J, Liu T, Gao T and Ao B Y 2012 Comput. Mater. Sci. 51 127
[4] Ao B Y, Wang X L, Shi P, Chen P H, Ye X Q, Lai X C and Gao T 2012 J. Nucl. Mater. 424 183
[5] Ao B Y, Wang X L, Shi P, Chen P H, Ye X Q, Lai X C, Ai J J and Gao T 2012 Int. J. Hydrogen Energ. 37 5108
[6] Ao B Y, Xia J X, Chen P H, Hu W Y and Wang X L 2012 Chin. Phys. B 21 026103
[7] Hecker S S 2008 Metall. Mater. Trans. A 39A 1585
[8] Murtaza G, Amin B, Arif S, Maqbool M, Ahmad I, Afaq A, Nazir S, Imran M and Haneef M 2012 Comput. Mater. Sci. 58 71
[9] Shim J H, Haule K and Kotliar G 2007 Nature 446 513
[10] Sun B, Zhang P and Zhao X G 2008 J. Chem. Phys. 128 084705
[11] Liu T, Cai T, Gao T and Li G 2010 Physica B 405 3717
[12] Wang B T and Zhang P 2011 Chin. Phys. Lett. 28 047101
[13] Wang H and Konashi K 2012 J. Alloy. Compd. 533 53
[14] Nakamura H, Machida M and Kato M 2010 Phys. Rev. B 82 155131
[15] Aldred A T, Cinader G, Lam D J and Weber L W 1979 Phys. Rev. B 19 300
[16] Willis J O, Ward J W, Smith J L, Kosiewicz S T, Haschke J M and Hodges III A E 1985 Physica B 130 527
[17] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2011 WIEN2k an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Austria: Karlheinz Schwarz Technische Universität Wien)
[18] Singh D J 1994 Planewaves, Pseudopotentials and the LAPW Method (Boston: Kluwer Academic)
[19] Kuneš J, Novak P, Diviš M and Oppeneer P M 2001 Phys. Rev. B 63 205111
[20] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[21] Brooks M M S and Johansson B 1985 Physica B+C 130 516
[22] Mulford R N R and Sturdy G E 1955 J. Am. Chem. Soc. 77 3449
[23] Mulford R N R and Sturdy G E 1956 J. Am. Chem. Soc. 78 3897
[24] Kanoun M B, Reshak A H, Bouayed K N and Said G S 2012 J. Magn. Magn. Mater. 324 1397
[25] Bouchet J, Siberchicot B, Jollet F and Pasturel A 2000 J. Phys.: Condens. Matter 12 1723
[26] Söderlind P, Eriksson O, Johansson B and Wills J M 1994 Phys. Rev. B 50 7291
[27] Eriksson O, Hao Y G, Cooper B R, Fernando G W, Cox L E, Ward J W and Boring A M 1991 Phys. Rev. B 43 4590
[1] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[2] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[3] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[4] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[5] Pressure-induced anomalous insulating behavior in frustrated iridate La3Ir3O11
Chun-Hua Chen(陈春华), Yong-Hui Zhou(周永惠), Ying Zhou(周颖), Yi-Fang Yuan(袁亦方), Chao An(安超), Xu-Liang Chen(陈绪亮), Zhao-Ming Tian(田召明), and Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2021, 30(6): 067402.
[6] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[7] Manipulating metal-insulator transitions of VO2 films via embedding Ag nanonet arrays
Zhangyang Zhou(周章洋), Jia Yang(杨佳), Yi Liu(刘艺), Zhipeng Gao(高志鹏), Linhong Cao(曹林洪), Leiming Fang(房雷鸣), Hongliang He(贺红亮), and Zhengwei Xiong(熊政伟). Chin. Phys. B, 2021, 30(12): 126803.
[8] Negative thermal expansion of Ca2RuO4 with oxygen vacancies
Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军). Chin. Phys. B, 2020, 29(8): 086501.
[9] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[10] High-resolution angle-resolved photoemission study of oxygen adsorbed Fe/MgO(001)
Mingtian Zheng, Eike F. Schwier, Hideaki Iwasawa, Kenya Shimada. Chin. Phys. B, 2020, 29(6): 067901.
[11] Defect engineering on the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons
Huakai Xu(许华慨), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(3): 037302.
[12] Tunable metal-insulator transition in LaTiO3/CaVO3 superlattices: A theoretical study
Ya-Kui Weng(翁亚奎), Meng-Lan Shen(沈梦兰), Jie Li(李杰), and Xing-Ao Li(李兴鳌). Chin. Phys. B, 2020, 29(12): 127303.
[13] Quantum critical duality in two-dimensional Dirac semimetals
Jiang Zhou(周江), Ya-Jie Wu(吴亚杰), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2019, 28(1): 017402.
[14] Electronic structures of impurities and point defects in semiconductors
Yong Zhang(张勇). Chin. Phys. B, 2018, 27(11): 117103.
[15] Spin-dependent transport characteristics of nanostructures based on armchair arsenene nanoribbons
Kai-Wei Yang(杨开巍), Ming-Jun Li(李明君), Xiao-Jiao Zhang(张小姣), Xin-Mei Li(李新梅), Yong-Li Gao(高永立), Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2017, 26(9): 098509.
No Suggested Reading articles found!