Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 117103    DOI: 10.1088/1674-1056/27/11/117103

Electronic structures of impurities and point defects in semiconductors

Yong Zhang(张勇)
Department of Electrical and Computer Engineering, University of North Carolina at Charlotte, Charlotte, NC 28223, USA

A brief history of the impurity theories in semiconductors is provided. A bound exciton model is proposed for both donor-and acceptor-like impurities and point defects, which offers a unified understanding for “shallow” and “deep” impurities and point defects. The underlying physics of computational results using different density-functional theory-based approaches are discussed and interpreted in the framework of the bound exciton model.

Keywords:  semiconductor      shallow impurity      deep impurity      bound exciton      density-functional theory      effective-mass theory      hydrogen model  
Received:  12 July 2018      Revised:  04 September 2018      Accepted manuscript online: 
PACS:  71.55.-i (Impurity and defect levels)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  78.20.-e (Optical properties of bulk materials and thin films)  
Corresponding Authors:  Yong Zhang     E-mail:

Cite this article: 

Yong Zhang(张勇) Electronic structures of impurities and point defects in semiconductors 2018 Chin. Phys. B 27 117103

[1] Gurney R W and Mott N F 1938 Trans. Faraday Soc. 34 506
[2] Tibbs S R 1939 Trans. Faraday Soc. 35 1471
[3] Karazhanov S Z, Zhang Y, Wang L W, Mascarenhas A and Deb S 2003 Phys. Rev. B 68 233204
[4] Zhang Y and Wang J 2014 Phys. Rev. B 90 155201
[5] Grimmeiss H G 1977 Annu. Rev. Mater. Sci. 7 341
[6] Hjalmarson H P, Vogl P, Wolford D J and Dow J D 1980 Phys. Rev. Lett. 44 810
[7] Yu P Y and Cardona M 1995 Fundamentals of semiconductors (Berlin:Springer)
[8] Mott N F and Gurney R W 1940 Electronic Processes in Ionic Crystals (London:Oxford University Press)
[9] Bethe H A 1942 Theory of the Boundary Layer of Crystal Rectifiers (Radiation Laboratory, Massachusetts Institute of Technology)
[10] Kittel C and Mitchell A H 1954 Phys. Rev. 96 1488
[11] Luttinger J M and Kohn W 1955 Phys. Rev. 97 869
[12] Baldereschi A and Lipari N O 1974 Phys. Rev. B 9 1525
[13] Madelung O 1996 Semiconductors-Basic Data (Berlin:Springer)
[14] Pantelides S T 1978 Rev. Mod. Phys. 50 797
[15] Van de Walle C G and Neugebauer J 2004 J. Appl. Phys. 95 3851
[16] Wei S H and Yan Y F 2011 in Advanced Calculations for Defects in Materials edited by A. Alkauskas et al. (New York:WileyVCH)
[17] Chen W, Tegenkamp C, Pfnür H and Bredow T 2010 Phys. Rev. B 82 104106
[18] Onton A, Fisher P and Ramdas A K 1967 Phys. Rev. 163 686
[19] Wei S H and Zunger A 1999 Phys. Rev. B 60 5404
[20] Baldereschi A and Lipari N O 1973 Phys. Rev. B 8 2697
[21] Shockley W 1950 Electrons and Holes in Semiconductors with Applications to Transistor Electronics (Princeton:D. VAN NOSTRAND COMPANY, INC,)
[22] Hopfield J J, Thomas D G and Lynch R T 1966 Phys. Rev. Lett. 17 312
[23] Sturge M D, Cohen E and Rodgers K F 1977 Phys. Rev. B 15 3169
[24] Zhang Y, Mascarenhas A and Wang L W 2005 Phys. Rev. B 71 155201
[25] Trumbore F A, Gershenzon M and Thomas D G 1966 Appl. Phys. Lett. 9 4
[26] Cohen E and Sturge M D 1977 Phys. Rev. B 15 1039
[27] Cohen E, Kardontchik J E, Sterenheim M and Sturge M D 1979 Bull. Am. Phys. Soc. 24 900
[28] Zhang Y 1992 Phys. Rev. B 45 9025
[29] Fischer D W and Rome J J 1983 Phys. Rev. B 27 4826
[30] Sturge M D, Vink A T and Kuijpers F P J 1978 Appl. Phys. Lett. 32 49
[31] Liu Z, Yi X, Wang L, Wei T, Yuan G, Yan J, Wang J, Li J, Shi Y and Zhang Y 2018 Semiconductor Science and Technology 33 114004
[32] Zhang Z Z, Partoens B, Chang K and Peeters F M 2008 Phys. Rev. B 77 155201
[33] Lambrecht W R L 2016 Rare Earth Transit. Met. Doping Semiconductor Mater. Edited By V. Dierolf I. T. Ferguson J. M. Zavada (Woodhead Publishing) p. 43
[34] Bassani F and Parravicini G P 1975 Electron. States Opt. Transit. Solids (Oxford:Pergamon) p. 190
[35] Wang L W 2009 J. Appl. Phys. 105 123712
[36] Rohlfing M and Louie S G 1998 Phys. Rev. Lett. 80 3320
[37] Zhang G, Canning A, GronbechJensen N, Derenzo S and Wang L W 2013 Phys. Rev. Lett. 110 166404
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[6] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[7] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[8] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[9] Lateral characteristics improvements of DBR laser diode with tapered Bragg grating
Qi-Qi Wang(王琦琦), Li Xu(徐莉), Jie Fan(范杰), Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(9): 094204.
[10] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[11] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[12] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[13] High power semiconductor laser array with single-mode emission
Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军). Chin. Phys. B, 2022, 31(5): 054209.
[14] Doublet luminescence due to coexistence of excitons and electron-hole plasmas in optically excited CH3NH3PbBr3 single crystal
Jie Wang(王杰), Guang-Zhe Ma(马广哲), Lu Cao(曹露), Min Gao(高敏), and Dong Shi(石东). Chin. Phys. B, 2022, 31(4): 047104.
[15] Structure design for high performance n-type polymer thermoelectric materials
Qi Zhang(张奇), Hengda Sun(孙恒达), and Meifang Zhu(朱美芳). Chin. Phys. B, 2022, 31(2): 028506.
No Suggested Reading articles found!