Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 037302    DOI: 10.1088/1674-1056/ab69ec
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Defect engineering on the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons

Huakai Xu(许华慨), Gang Ouyang(欧阳钢)
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Synergetic Innovation Center for Quantum Effects and Applications(SICQEA), Hunan Normal University, Changsha 410081, China
Abstract  We investigate the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons (APNRs) containing atomic vacancies with different distributions and concentrations using ab initio density functional calculations. It is found that the atomic vacancies are easier to form and detain at the edge region rather than a random distribution through analyzing formation energy and diffusion barrier. The highly local defect states are generated at the vicinity of the Fermi level, and emerge a deep-to-shallow transformation as the width increases after introducing vacancies in APNRs. Moreover, the electrical transport of APNRs with vacancies is enhanced compared to that of the perfect counterparts. Our results provide a theoretical guidance for the further research and applications of PNRs through defect engineering.
Keywords:  density-functional theory      defect engineering      armchair phosphorene nanoribbon      non-equilibrium Green'      s function  
Received:  10 December 2019      Revised:  07 January 2020      Accepted manuscript online: 
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.23.-b (Electronic transport in mesoscopic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574080 and 91833302).
Corresponding Authors:  Gang Ouyang     E-mail:  gangouy@hunnu.edu.cn

Cite this article: 

Huakai Xu(许华慨), Gang Ouyang(欧阳钢) Defect engineering on the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons 2020 Chin. Phys. B 29 037302

[1] Woomer A H, Farnsworth T W, Hu J, Wells R A, Donley C L and Warren S C 2015 ACS Nano 9 8869
[2] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[3] Xia F N, Wang H and Jia Y C 2014 Nat. Commun. 5 4458
[4] Liang L, Wang J, Lin W, Sumpter B G, Meunier V and Pan M 2014 Nano Lett. 14 6400
[5] Buscema M, Groenendijk D J, Blanter S I, Steele G A, van der Zant H S J and Castellanos-Gomez A 2014 Nano Lett. 14 3347
[6] Priydarshi A, Chauhan Y S, Bhowmick S and Agarwal A 2018 Phys. Rev. B 97 115434
[7] Kumar P, Bhadoria B S, Kumar S, Bhowmick S, Chauhan Y S and Agarwal A 2016 Phys. Rev. B 93 195428
[8] Lei W, Liu G, Zhang J and Liu M 2017 Chem. Soc. Rev. 46 3492
[9] Zhang P, Wang J and Duan X M 2016 Chin. Phys. B 25 037302
[10] Zhang Z and Ouyang G 2018 ACS Appl. Energy Mater. 1 5675
[11] Nourbakhsh Z and Asgari R 2016 Phys. Rev. B 94 035437
[12] Pang J, Bachmatiuk A, Yin Y, Trzebicka B, Zhao L, Fu L, Mendes R G, Gemming T, Liu Z and Rummeli M H 2018 Adv. Energy Mater. 8 1702093
[13] Li X, Wang X, Zhang L, Lee S and Dai H 2008 Science 319 1229
[14] Vierimaa V, Krasheninnikov A V and Komsa H P 2016 Nanoscale 8 7949
[15] Wu Q, Shen L, Yang M, Cai Y, Huang Z and Feng Y P 2015 Phys. Rev. B 92 035436
[16] Yagmurcukardes M, Peeters F M, Senger R T and Sahin H 2016 Appl. Phys. Rev. 3 041302
[17] Li Y, Zhou Z, Zhang S and Chen Z 2008 J. Am. Chem. Soc. 130 16739
[18] Watts M C, Picco L, Russell-Pavier F S, Cullen P L, Miller T S, Bartus S P, Payton O D, Skipper N T, Tileli V and Howard C A 2019 Nature 568 216
[19] Maity A, Singh A, Sen P, Kibey A, Kshirsagar A and Kanhere D G 2016 Phys. Rev. B 94 075422
[20] Zhang J, Liu H J, Cheng L, Wei J, Liang J H, Fan D D, Shi J, Tang X F and Zhang Q J 2015 Sci. Rep. 4 6452
[21] Fan Z Q, Sun W Y, Jiang X W, Luo J W and Li S S 2017 Org. Electron. 44 20
[22] Liu Y, Bo M, Yang X, Zhang P, Sun C Q and HuangY 2017 Phys. Chem. Chem. Phys. 19 5304
[23] Li W, Zhang G and Zhang Y W 2014 J. Phys. Chem. C 118 22368
[24] Dong M M, Wang Z Q, Zhang G P, Wang C K and Fu X X 2019 Phys. Chem. Chem. Phys. 21 4879
[25] Liao C W, Zhao Y P and Ouyang G 2018 ACS Omega 3 14641
[26] Poljak M and Suligoj T 2018 IEEE Trans. Electron. Dev. 65 290
[27] Farooq M U, Hashmi A and Hong J 2015 ACS Appl. Mater. Inter. 714423
[28] Guo C, Wang T, Xia C and Liu Y 2017 Sci. Rep. 7 12799
[29] Si C, Choe D, Xie W, Wang H, Sun Z, Bang J and Zhang S 2019 Nano Lett. 19 3612
[30] Wang Y, Pham A, Li S and Yi J 2016 J. Phys. Chem. C 120 9773
[31] Srivastava P, Hembram K P, Mizuseki H, Lee K R, Han S S and Kim S 2015 J. Phys. Chem. C 119 6530
[32] Chintalapati S, Lei S, Xiong Q and Yuan P F 2015 Appl. Phys. Lett. 107 072401
[33] Sha Z D, Pei Q X, Zhang Y Y and Zhang Y W 2016 Nanotechnology 27 315704
[34] Riffle J V, Flynn C, Laurent B S, Ayotte C A, Caputo C A and Hollen S M 2018 J. Appl. Phys. 123 044301
[35] Hu W and Yang J 2015 J. Phys. Chem. C 119 20474
[36] Cai Y, Ke Q, Zhang G, Yakobson B and Zhang Y 2016 J. Am. Chem. Soc. 138 10199
[37] Gaberle J and Shluger A L 2018 Nanoscale 10 19536
[38] Xie F, Fan Z, Zhang X, Liu J, Wang H, Liu K, Yu J and Long M 2017 Org. Electron. 42 21
[39] Yuan S, Rudenko A N and Katsnelson M I 2015 Phys. Rev. B 91 115436
[40] Poljak M and Suligoj T 2016 Nano Res. 9 1723
[41] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[42] Naemi Z, Tafreshi M J, Salami N and Shokri A 2019 J. Mater. Sci. 54 7728
[43] Sheppard D, Xiao P, Chemelewski W, Johnson D D and Henkelman G 2012 J. Chem. Phys. 136 074103
[44] Buttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
[45] Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475
[46] Das P M, Danda G and Cupo A et al. 2016 ACS Nano 10 5687
[47] Li L L and Peeters F M 2018 Phys. Rev. B 97 075414
[1] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[2] Green's function Monte Carlo method combined with restricted Boltzmann machine approach to the frustrated J1-J2 Heisenberg model
He-Yu Lin(林赫羽), Rong-Qiang He(贺荣强), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2022, 31(8): 080203.
[3] Effect of crystallographic orientations on transport properties of methylthiol-terminated permethyloligosilane molecular junction
Ming-Lang Wang(王明郎), Bo-Han Zhang(张博涵), Wen-Fei Zhang(张雯斐), Xin-Yue Tian(田馨月), Guang-Ping Zhang(张广平), and Chuan-Kui Wang(王传奎). Chin. Phys. B, 2022, 31(7): 077303.
[4] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[5] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[6] Theoretical design of thermal spin molecular logic gates by using a combinational molecular junction
Yi Guo(郭逸), Peng Zhao(赵朋), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(4): 047202.
[7] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[8] A spintronic memristive circuit on the optimized RBF-MLP neural network
Yuan Ge(葛源), Jie Li(李杰), Wenwu Jiang(蒋文武), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(11): 110702.
[9] Device design based on the covalent homocouplingof porphine molecules
Minghui Qu(曲明慧), Jiayi He(贺家怡), Kexin Liu(刘可心), Liemao Cao(曹烈茂), Yipeng Zhao(赵宜鹏), Jing Zeng(曾晶), and Guanghui Zhou(周光辉). Chin. Phys. B, 2021, 30(9): 098504.
[10] Detection of spin current through a quantum dot with Majorana bound states
Ning Wang(王宁), Xingtao An(安兴涛), and Shuhui Lv(吕树慧). Chin. Phys. B, 2021, 30(10): 100302.
[11] Charge structure factors of doped armchair nanotubes in the presence of electron-phonon interaction
Hamed Rezania, Farshad Azizi. Chin. Phys. B, 2020, 29(9): 096501.
[12] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[13] Theoretical design of single-molecule NOR and XNOR logic gates by using transition metal dibenzotetraaza[14]annulenes
Zi-Qun Wang(王子群), Fei Tang(唐菲), Mi-Mi Dong(董密密), Ming-Lang Wang(王明郎), Gui-Chao Hu(胡贵超), Jian-Cai Leng(冷建材), Chuan-Kui Wang(王传奎), Guang-Ping Zhang(张广平). Chin. Phys. B, 2020, 29(6): 067202.
[14] High-resolution angle-resolved photoemission study of oxygen adsorbed Fe/MgO(001)
Mingtian Zheng, Eike F. Schwier, Hideaki Iwasawa, Kenya Shimada. Chin. Phys. B, 2020, 29(6): 067901.
[15] Different noncollinear magnetizations on two edges of zigzag graphene nanoribbons
Yang Xiao(肖杨), Qiaoli Ye(叶巧利), Jintao Liang(梁锦涛), Xiaohong Yan(颜晓红), and Ying Zhang(张影). Chin. Phys. B, 2020, 29(12): 127201.
No Suggested Reading articles found!