CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Defect engineering on the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons |
Huakai Xu(许华慨), Gang Ouyang(欧阳钢) |
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Synergetic Innovation Center for Quantum Effects and Applications(SICQEA), Hunan Normal University, Changsha 410081, China |
|
|
Abstract We investigate the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons (APNRs) containing atomic vacancies with different distributions and concentrations using ab initio density functional calculations. It is found that the atomic vacancies are easier to form and detain at the edge region rather than a random distribution through analyzing formation energy and diffusion barrier. The highly local defect states are generated at the vicinity of the Fermi level, and emerge a deep-to-shallow transformation as the width increases after introducing vacancies in APNRs. Moreover, the electrical transport of APNRs with vacancies is enhanced compared to that of the perfect counterparts. Our results provide a theoretical guidance for the further research and applications of PNRs through defect engineering.
|
Received: 10 December 2019
Revised: 07 January 2020
Accepted manuscript online:
|
PACS:
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574080 and 91833302). |
Corresponding Authors:
Gang Ouyang
E-mail: gangouy@hunnu.edu.cn
|
Cite this article:
Huakai Xu(许华慨), Gang Ouyang(欧阳钢) Defect engineering on the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons 2020 Chin. Phys. B 29 037302
|
[1] |
Woomer A H, Farnsworth T W, Hu J, Wells R A, Donley C L and Warren S C 2015 ACS Nano 9 8869
|
[2] |
Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
|
[3] |
Xia F N, Wang H and Jia Y C 2014 Nat. Commun. 5 4458
|
[4] |
Liang L, Wang J, Lin W, Sumpter B G, Meunier V and Pan M 2014 Nano Lett. 14 6400
|
[5] |
Buscema M, Groenendijk D J, Blanter S I, Steele G A, van der Zant H S J and Castellanos-Gomez A 2014 Nano Lett. 14 3347
|
[6] |
Priydarshi A, Chauhan Y S, Bhowmick S and Agarwal A 2018 Phys. Rev. B 97 115434
|
[7] |
Kumar P, Bhadoria B S, Kumar S, Bhowmick S, Chauhan Y S and Agarwal A 2016 Phys. Rev. B 93 195428
|
[8] |
Lei W, Liu G, Zhang J and Liu M 2017 Chem. Soc. Rev. 46 3492
|
[9] |
Zhang P, Wang J and Duan X M 2016 Chin. Phys. B 25 037302
|
[10] |
Zhang Z and Ouyang G 2018 ACS Appl. Energy Mater. 1 5675
|
[11] |
Nourbakhsh Z and Asgari R 2016 Phys. Rev. B 94 035437
|
[12] |
Pang J, Bachmatiuk A, Yin Y, Trzebicka B, Zhao L, Fu L, Mendes R G, Gemming T, Liu Z and Rummeli M H 2018 Adv. Energy Mater. 8 1702093
|
[13] |
Li X, Wang X, Zhang L, Lee S and Dai H 2008 Science 319 1229
|
[14] |
Vierimaa V, Krasheninnikov A V and Komsa H P 2016 Nanoscale 8 7949
|
[15] |
Wu Q, Shen L, Yang M, Cai Y, Huang Z and Feng Y P 2015 Phys. Rev. B 92 035436
|
[16] |
Yagmurcukardes M, Peeters F M, Senger R T and Sahin H 2016 Appl. Phys. Rev. 3 041302
|
[17] |
Li Y, Zhou Z, Zhang S and Chen Z 2008 J. Am. Chem. Soc. 130 16739
|
[18] |
Watts M C, Picco L, Russell-Pavier F S, Cullen P L, Miller T S, Bartus S P, Payton O D, Skipper N T, Tileli V and Howard C A 2019 Nature 568 216
|
[19] |
Maity A, Singh A, Sen P, Kibey A, Kshirsagar A and Kanhere D G 2016 Phys. Rev. B 94 075422
|
[20] |
Zhang J, Liu H J, Cheng L, Wei J, Liang J H, Fan D D, Shi J, Tang X F and Zhang Q J 2015 Sci. Rep. 4 6452
|
[21] |
Fan Z Q, Sun W Y, Jiang X W, Luo J W and Li S S 2017 Org. Electron. 44 20
|
[22] |
Liu Y, Bo M, Yang X, Zhang P, Sun C Q and HuangY 2017 Phys. Chem. Chem. Phys. 19 5304
|
[23] |
Li W, Zhang G and Zhang Y W 2014 J. Phys. Chem. C 118 22368
|
[24] |
Dong M M, Wang Z Q, Zhang G P, Wang C K and Fu X X 2019 Phys. Chem. Chem. Phys. 21 4879
|
[25] |
Liao C W, Zhao Y P and Ouyang G 2018 ACS Omega 3 14641
|
[26] |
Poljak M and Suligoj T 2018 IEEE Trans. Electron. Dev. 65 290
|
[27] |
Farooq M U, Hashmi A and Hong J 2015 ACS Appl. Mater. Inter. 714423
|
[28] |
Guo C, Wang T, Xia C and Liu Y 2017 Sci. Rep. 7 12799
|
[29] |
Si C, Choe D, Xie W, Wang H, Sun Z, Bang J and Zhang S 2019 Nano Lett. 19 3612
|
[30] |
Wang Y, Pham A, Li S and Yi J 2016 J. Phys. Chem. C 120 9773
|
[31] |
Srivastava P, Hembram K P, Mizuseki H, Lee K R, Han S S and Kim S 2015 J. Phys. Chem. C 119 6530
|
[32] |
Chintalapati S, Lei S, Xiong Q and Yuan P F 2015 Appl. Phys. Lett. 107 072401
|
[33] |
Sha Z D, Pei Q X, Zhang Y Y and Zhang Y W 2016 Nanotechnology 27 315704
|
[34] |
Riffle J V, Flynn C, Laurent B S, Ayotte C A, Caputo C A and Hollen S M 2018 J. Appl. Phys. 123 044301
|
[35] |
Hu W and Yang J 2015 J. Phys. Chem. C 119 20474
|
[36] |
Cai Y, Ke Q, Zhang G, Yakobson B and Zhang Y 2016 J. Am. Chem. Soc. 138 10199
|
[37] |
Gaberle J and Shluger A L 2018 Nanoscale 10 19536
|
[38] |
Xie F, Fan Z, Zhang X, Liu J, Wang H, Liu K, Yu J and Long M 2017 Org. Electron. 42 21
|
[39] |
Yuan S, Rudenko A N and Katsnelson M I 2015 Phys. Rev. B 91 115436
|
[40] |
Poljak M and Suligoj T 2016 Nano Res. 9 1723
|
[41] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[42] |
Naemi Z, Tafreshi M J, Salami N and Shokri A 2019 J. Mater. Sci. 54 7728
|
[43] |
Sheppard D, Xiao P, Chemelewski W, Johnson D D and Henkelman G 2012 J. Chem. Phys. 136 074103
|
[44] |
Buttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
|
[45] |
Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475
|
[46] |
Das P M, Danda G and Cupo A et al. 2016 ACS Nano 10 5687
|
[47] |
Li L L and Peeters F M 2018 Phys. Rev. B 97 075414
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|